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Contributed Research Report 
 
The purpose of this research was to gain insights into how calculus students might come to 
understand the formal definitions of sequence, series, and pointwise convergence. In this paper 
we discuss how one pair of students constructed a formal ε-N definition of series convergence 
following their prior reinvention of the formal definition of convergence for sequences. Their 
prior reinvention experience with sequences supported them to construct a series convergence 
definition and unpack its meaning. We then detail how their reinvention of a formal definition of 
series convergence aided them in the reinvention of pointwise convergence in the context of 
Taylor series. Focusing on particular x-values and describing the details of series convergence 
on vertical number lines helped students to transition to a definition of pointwise convergence. 
We claim that the instructional guidance provided to the students during the teaching experiment 
successfully supported them in meaningful reinvention of these definitions. 
 
Keywords: Reinvention of Definitions, Series Convergence, Pointwise Convergence, Taylor 
Series 
 
Introduction and Research Questions 

How students come to reason coherently about the formal definition of series and pointwise 
convergence is a topic that has not be investigated in great detail. Research into how students 
develop an understanding of formal limit definitions has been largely restricted to either the limit 
of a function (Cottrill et al., 1996; Swinyard, in press) or the limit of a sequence (Roh, 2010). 
The general consensus among the few studies in this area is that calculus students have great 
difficulty reasoning coherently about formal definitions of limit (Bezuidenhout, 2001; Cornu, 
1991; Tall, 1992; Williams, 1991). The majority of existing research literature on students’ 
understanding of sequences and series concentrates on informal notions of convergence 
(Przenioslo, 2004) or the influence of visual reasoning or beliefs (Alcock & Simpson, 2004, 
2005). Literature on pointwise convergence is typically in the context of Taylor series addressing 
student understanding of various convergence tests (Kung & Speer, 2010), the categorization of 
various conceptual images of convergence (Martin, 2009), the influence of visual images on 
student learning (Kidron & Zehavi, 2002), and the effects of metaphorical reasoning (Martin & 
Oehrtman, 2010). We recruited a pair of students from a second-semester calculus course 
incorporating approximation and error analysis as a coherent approach to developing the 
concepts in calculus defined in terms of limits (Oehrtman, 2008). The goal that they reinvent the 
formal definitions of sequence, series, and pointwise convergence. For this paper we posed: 

1. What are the challenges that students encountered during guided reinvention of the 
definitions for series and pointwise convergence? 



2. What aspects of the students’ definition of sequence convergence supported their 
reinvention of series convergence? What aspects of the students’ definition of series 
convergence supported their reinvention of the definition of pointwise convergence? 

 
Theoretical Perspective and Methods 

To investigate our research questions, we adopted a developmental research design, 
described by Gravemeijer (1998) “to design instructional activities that (a) link up with the 
informal situated knowledge of the students, and (b) enable them to develop more sophisticated, 
abstract, formal knowledge, while (c) complying with the basic principle of intellectual 
autonomy” (p.279). Task design was supported by the guided reinvention heuristic, rooted in the 
theory of Realistic Mathematics Education (Freudenthal, 1973). Guided reinvention is described 
by Gravemeijer, K., Cobb, P., Bowers, J., and Whitenack, J. (2000) as “a process by which 
students formalize their informal understandings and intuitions” (p.237).  

The authors conducted a six-day teaching experiment with two students at a large, southwest, 
urban university. The full teaching experiment was comprised of six, 90-120 minute sessions 
with a pair of students who were currently taking a Calculus course whose topics included 
sequences, series, and Taylor series. The central objective of the teaching experiment was for the 
students to generate rigorous definitions of sequence convergence, series convergence, and 
pointwise convergence. The research reported here focuses on the evolution of the two students’ 
definitions of series and pointwise convergence over the course of the last three sessions of the 
teaching experiment following the students’ reinvention of a formal definition of sequence 
convergence. The design of the instructional activities was inspired by the proofs and refutations 
design heuristic adapted by Larsen and Zandieh (2007) based on Lakatos’ (1976) framework for 
historical mathematical discovery.  

The teaching experiment activities on series began with students producing and subsequently 
unpacking details of convergent series graphically. We then asked the students to generate a 
definition by completing the statement, “A series converges when…” To address pointwise 
convergence, we asked the students to produce a graph of ex with several approximating Taylor 
polynomials and discuss several details of convergence on the graph. The students where then 
prompted to talk about what Taylor series were, and finally instructed to produce a definition for 
Taylor series convergence. The majority of each session consisted of students’ iterative 
refinement of a definition and the unpacking of their intended meanings for individual elements 
within each definition.  
 
Results 

The reinvention of series convergence began at the end of day 3 and continued on into the 4th 
day. The students initially drew a graph of an alternating series, and after considering the 
harmonic series, they remembered that the series was divergent. When considering other 
formulas they were unable to produce another graph besides alternating series graphs. However, 
when prompted to not focus on finding a formula, the students compared these graphs to 
sequences and expressed that series graphs “are harder to throw out there.” After they stopped  
focusing a formula they were able to produce a series graph increasing toward 7 and partial sums 
eventually became constant. Afterwards, these graphs were available for the students to refer to 
when defining series convergence. The students’ initial definition of series convergence to 7 was 
simply that a series converges when “the an’s are going to 0 and sn’s are going to 7.”  On day 4, 
after briefly looking at their graphs of series from the previous day, the students almost 



immediately started to perceive “graphically” series as “very similar to sequences because you 
could still set the error bound within certain- whatever range you want- any error bound, and 
then determine the point N where all the partial sums are within the error bound.” Likewise, the 
students stated the meaning of series convergence in terms of terminologies and notations from 
the approximation frame. They also reinterpreted each element (N, error bounds, quantifiers) 
from their prior definition of sequence convergence as elements in a definition for series 
convergence. Furthermore, they recognized the need to replace an with the partial sum sn. 
However, the students did not just change an to sn, they considered each dot in the series graph as 
representative of partial sums, “You’re adding a1 to a2 to a3 to get each one of these dots on the 
graph of a series.” After a few revisions, they constructed a definition for series convergence as 
follows: "A series converges to U when ∀ε > 0 , there exists some N s.t. ∀n ≥ N  U − Sn ≤ ε ."  

In initially discussing Taylor series, the students employed informal reasoning as they 
described various graphical attributes of Taylor polynomials approaching ex. While giving these 
informal descriptions the students were not attending to the convergence of Taylor series for 
particular values of the independent variable. When they were prompted to discus error, 
however, one of the students suggested considering a specific point, and they subsequently 
highlighted errors as vertical distances between the values of ex and a Taylor polynomial at a 
particular x-value. Even though their focus had moved to a particular x-value, they continued to 
employ informal reasoning that entailed Taylor polynomials and generating functions as being 
exactly the same once the graphs were “on” each other. They reasoned that this “on-ness” would 
occur for a Taylor polynomial of relatively low degree for x-values close to the center while a 
larger degree was needed for x-values away from the center. Only once they had used a Taylor 
series equation for ex to find an explicit series for e did they realize that a finite number of terms 
merely approximated ex because the remaining terms not used in the approximation “had value.” 

Once the students recognized that focusing on a single x-value produced a series, they 
attempted to leverage their definition of series convergence to define Taylor series convergence. 
During this process they demonstrated considerable confusion between the independent variable, 
x, and the index, n. One of the students questioned the existence of an N for which all subsequent 
Taylor polynomial approximations would be within a given error bound of ex, but in her 
explanation N appeared to correspond to some lower bound of x-values rather than n-values. 
After being instructed to explain their definition of series convergence using only a vertical 
number line, the students recognized the role of N on a vertical number line. This shift to 
viewing series in a vertical orientation eventually freed them to see the graphs of Taylor series as 
comprised of convergent series at each x-value where N is dependent upon x as well as ε. 
Subsequently they expressed a need to “expand” their series definition to capture all x-values. In 
their first attempt they simply added ∀x  at the end of their definition, but they later expressed 
discomfort with finding one N such that all subsequent Taylor polynomials would be within ε of 
ex for all x. The students then quickly latched onto a suggestion to move ∀x  to the beginning of 
their definition, acknowledging how this movement expressed the dependence of N upon x. Their 
final definition of pointwise convergence in the context of a Taylor series with an infinite 
interval of convergence was as follows: “A Taylor series converges to  when ,  
there exists some N such that  .” 

Even though this definition for Taylor series convergence captures much the formal meaning 
of pointwise convergence, one student commented that the consecutive universal quantifiers felt 
“goofy.” Even so, they continued to view it as best capturing Taylor series convergence. 
 



Conclusion and Discussion 
It is remarkable that the students reinvented and unpacked the formal definition of series and 

pointwise convergence within such a short time. The students faced challenges that ranged from 
seeing graphical attributes of series and Taylor series to the ordering of quantifiers. We claim 
that the instructional guidance provided to the students during the teaching experiment 
successfully supported them engaging these challenges and their subsequent reinvention of these 
definitions.  First of all, the instructors’ asking students to produce graphs of series and Taylor 
series convergence gave students a reference point for which they could refer to during the 
construction of their definitions. Second, the prior activity of defining sequence convergence 
became a means for supporting the students’ definition of series convergence as they recognized 
similarities between sequence and series convergence in the context of their graphs and their 
definitions. Similarly, their prior activity of defining sequence and series convergence supported 
students’ definition of pointwise convergence. Finally, their emerging approximation scheme 
helped the students to meaningfully recognize similarities between definitions and interpret each 
component within a definition. The approximation terminology that they had learned from class 
allowed them to meaningfully interpret the role of approximations, error, and error bounds in and 
across definitions.  
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