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Abstract 
Little research exists on the ways in which students may develop an understanding of formal 

limit definitions. We conducted a study to i) generate insights into how students might leverage 

their intuitive understandings of sequence convergence to construct a formal definition and 

ii) assess the extent to which a previously established approximation scheme may support 

students in constructing their definition. Our research is rooted in the theory of Realistic 

Mathematics Education and employed the methodology of guided reinvention in a teaching 

experiment. In three 90-minute sessions, two students, neither of whom had previously seen a 

formal definition of sequence convergence, constructed a rigorous definition using formal 

mathematical notation and quantification nearly identical to the conventional definition. The 

students’ use of an approximation scheme and concrete examples were both central to their 

progress, and each portion of their definition emerged in response to overcoming specific 

cognitive challenges. 
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Introduction and Research Questions 

A robust understanding of formal limit definitions is foundational for undergraduate 

mathematics students proceeding to upper-division analysis-based courses. Definitions of limits 

often serve as a starting point for developing facility with formal proof techniques, making sense 

of rigorous, formally-quantified mathematical statements, and transitioning to abstract thinking. 

The majority of the literature on students’ understanding of limits (Bezuidenhout, 2001; Cornu, 

1991; Davis & Vinner, 1986; Monaghan, 1991; Tall, 1992; Williams, 1991) describes informal 

student reasoning about limits, with particular attention given to the myriad of student 

misconceptions. However, there is a paucity of research on student reasoning about formal 

definitions of limits. The general consensus among the few studies in this area seems clear – 

calculus students have great difficulty reasoning coherently about the formal definition (Artigue, 

2000; Bezuidenhout, 2001; Cornu, 1991; Tall, 1992; Williams, 1991). What is less clear, 

however, is how students come to understand the formal definition. Indeed, this is an open 

question with few empirical insights from research to inform it (Cottrill et al., 1996; Roh, 2008; 

Swinyard, in press). Oehrtman (2008) proposed a coherent approach to developing the concepts 

in calculus through a conceptually accessible framework for limits in terms of approximation and 



error analysis. Students were recruited to participate in our study from a course that relied 

heavily on Oehrtman’s approach. This study addressed the following research questions: 

1. What are the cognitive challenges that students encounter during a process of guided 

reinvention of the formal definition for sequence convergence? 

2. What aspects of their concept images do students evoke during this reinvention? 

3. How do students’ evoked concept images and their solutions to cognitive challenges 

encountered support more advanced mathematical thinking about limits of sequences? 

Theoretical Perspective and Methods 

We adopted a developmental research design, described by Gravemeijer (1998) “to design 

instructional activities that (a) link up with the informal situated knowledge of the students, and 

(b) enable them to develop more sophisticated, abstract, formal knowledge, while (c) complying 

with the basic principle of intellectual autonomy” (p.279). Task design was supported by the 

guided reinvention heuristic, rooted in the theory of Realistic Mathematics Education 

(Freudenthal, 1973). Guided reinvention is described by Gravemeijer, K., Cobb, P., Bowers, J., 

and Whitenack, J. (2000) as “a process by which students formalize their informal 

understandings and intuitions” (p.237).  

The authors conducted a six-day teaching experiment with two students at a large, southwest, 

urban university. The full teaching experiment was comprised of six 90-120 minute sessions with 

a pair of students currently taking a Calculus course whose topics included sequences, series, and 

Taylor series. The central objective of the teaching experiment was for the students to generate 

rigorous definitions of sequence, series, and pointwise convergence. The research reported here 

focuses on the evolution of the two students’ definition of sequence convergence over the course 

of the first three sessions of the teaching experiment. The design of the instructional activities 

was inspired by the proofs and refutations design heuristic adapted by Larsen and Zandieh 

(2007) based on Lakatos’ (1976) framework for historical mathematical discovery. Activities 

commenced with students generating prototypical examples of sequences that converge to 5 and 

sequences that do not converge to 5. The majority of each session then consisted of the students’ 

iterative refinement of a definition to fully characterize sequence convergence. The students 

were to evaluate their own progress by determining whether their definition included all of the 

examples of convergent sequences and excluded all of the non-examples.  

Results 

Three broad areas of findings emerged from our data analysis: the role of students’ use of 

examples, the effect of a scheme for limits based on approximation language, and the students’ 

adoption and appreciation of quantifiers and efficient mathematical expressions.  

The Role of Examples. The students’ reinvention efforts were aided considerably by the 

presence of the examples they constructed at the start of the experiment. These examples served 

as sources of cognitive conflict when their definition failed to fully capture the necessary and 

sufficient conditions under which sequences converge. For example, the students’ initial 

definitions were predictably couched in language that was vague, intuitive, and dynamic. Their 

first written definition was “A sequence converges to 5 as n→∞ provided that the number 

approaches or is 5 and no other number.” The students immediately identified weaknesses in this 

definition as they applied it to their examples that increase monotonically to 4, alternate around 5 

or behave erratically before eventually looking like a standard example of a convergent 

sequence. Having identified these weaknesses, they also looked to their examples to provide 



direction for their revisions. This pattern of evaluating and refining their definitions against the 

examples repeated over 18 cycles during the first three days of the teaching experiment. 

The Effect of an Approximation Scheme for Limits. The students’ familiarity with a 

previously established approximation scheme mirroring the structure of the formal definition but 

framed in more accessible terms (Oehrtman, 2008) provided students significant leverage for i) 

focusing on relevant quantities in the formal definition, ii) fluently working with the 

relationships between these quantities, and iii) making the necessary but difficult cognitive shift 

to focus on N as a function of ε (Roh, 2008; Swinyard, in press). For example, during the first 12 

minutes of the teaching experiment, the students did not invoke language about approximations 

to describe aspects of a sequence {an}. During this time they did not discuss or represent the 

quantity |an – 5| in any form and all descriptions of convergence involved informal dynamic 

language. But once they invoked an approximation scheme, they described the limit as the value 

being approximated, the terms an as the approximations and the distance between them as the 

error which they immediately represented as |an – 5|. These ideas became an integral part of their 

arguments and the students shifted to discussing how close the terms needed to get to 5 to 

consider the sequence convergent. After another 14 minutes, the students invoked the idea of an 

error bound (corresponding to ε in the formal definition) to address this question and focused on 

how to make the error smaller than this bound. Nine minutes later, they introduced the idea of 

there being “some point n” (corresponding to N in the formal definition) at which this must 

happen. Afterwards, they consistently reasoned that this “point n depends [on] what the 

acceptable error is.” For the remainder of Day 1 and throughout Days 2 and 3 of the teaching 

experiment, the students continued to rely on this approximation scheme to describe the relevant 

quantities and to keep track of the relationships among them.  

Adoption of Quantifiers and Mathematical Expressions. Powerful use of logical quantifiers 

and mathematical expressions emerged only after the students had i) fully developed the 

underlying conceptual structure of convergence in informal terms, ii) wrestled with the problem 

of how to rigorously express those ideas, and iii) seen the quantifiers and expressions as viable 

solutions to these problems. Early in the first day of the teaching experiment, one student 

recalled the use of universal and existential quantifiers. While she used them correctly neither 

student applied them to resolve any problem they were wrestling with and they soon dropped the 

quantifiers. On Day 3 of the teaching experiment, the students were consistently verbalizing all 

elements and appropriate logic of the ε-N definition, but lacked the terminology or notation to 

construct what they considered an acceptable written definition. As they struggled with these 

issues, brief reminders of the quantifiers they had used earlier but discarded were seized upon as 

perfect solutions to their difficulties. Ultimately the students settled on the definition 
 

“A sequence converges to U when ∀ ε, there exists some N, ∀ n ≥ N, |U – an|<ε.” 

The students expressed strong appreciation for the power of the quantifiers and mathematical 

notation in their definition, citing multiple problems that each part efficiently resolved.  

Limitations, Implications and Conclusions 

The two students in this teaching experiment had only experienced instruction aimed at 

developing a systematic approximation scheme for reasoning about limits for a portion of one 

calculus course. Consequently, it is not surprising that they did not immediately invoke this 

scheme as they began to wrestle with generating a definition of sequence convergence and that 

the scheme emerged in pieces. Nevertheless, it did not take them long to turn to approximation 

ideas, and each portion of their evoked scheme emerged in response to particular problems for 



which it was well-suited to address. We note that these students progressed much more quickly 

towards a formal definition and through resolving several cognitive challenges than students not 

introduced to the approximation framework (Swinyard, in press). Once evoked, the students’ 

ideas about approximation remained consistent, and their images and application of their scheme 

was sufficiently strong to provide them considerable guidance and conceptual support for 

reasoning about the formal definition. 

This study drew from data collected in a teaching experiment with only two students and we 

acknowledge that each individual will follow unique paths. Further, orchestrating this type of 

discussion for an entire class will certainly involve significant differences from what was 

possible with focused attention on two students. Nevertheless, these students’ reinvention of the 

definition serves not only as an existence proof that students can construct a coherent definition 

of sequence convergence, but also as an illustration of how students might reason as they do so. 

Our findings shed light on several relevant cognitive challenges engaged by the students, how 

they resolved these difficulties, and the resulting conceptual power derived from their solutions. 

These results are guiding our future work to develop, evaluate and refine classroom activities for 

introductory analysis courses. 
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