
How Mathematicians Use Diagrams to Construct Proofs 

 

1. Introduction 

 One of the primary goals of undergraduates’ upper-level mathematics courses is 

to improve their abilities to construct formal proofs. Unfortunately, numerous studies 

reveal that mathematics majors have serious difficulties with this task (e.g., Moore, 1994; 

Weber, 2001). While there has been extensive research documenting undergraduates’ 

difficulties with proof construction, research on how undergraduates can or do 

successfully construct proofs has been limited.  

One approach that several researchers recommend is for students to base their 

formal proofs on diagrams and other informal arguments (e.g., Gibson, 1998; Raman, 

2003). These recommendations are supported by the theoretical advantages afforded by 

visual reasoning (Alcock & Simpson, 2004; Gibson, 1998), successful illustrations of 

students using visual arguments as a basis for formal arguments (e.g., Alcock & Weber, 

2010; Gibson, 1998), and the fact that mathematicians claim to use diagrams extensively 

in their own work. 

However, for this to be useful pedagogical advice, more research is needed on 

how students can effectively use diagrams in their proof construction. Researchers such 

as Pedemonte (2007) and Alcock and Weber (2010) have noted that students find it 

difficult to translate an informal visual argument a formal proof. Also, several studies 

have failed to find a correlation between students’ propensity to use diagrams and their 

success in proof-writing (e.g., Alcock & Simpson, 2004; Alcock & Weber, 2010; Pinto & 

Tall, 1999). If undergraduates are to successfully use diagrams as a basis for their proofs, 

they need to have a better understanding of how diagrams can be useful in proof 

construction and the skills needed to express and justify inferences drawn from a diagram 

in the language of formal mathematical proof. The goal of this presentation is to 

investigate these issues by analyzing ten mathematicians’ behavior as they complete a 

non-trivial proof construction task that invites the construction and use of a graph. 

 

2. Theoretical assumptions 

 This paper is based on the assumption that a goal of instruction in advanced 

mathematics courses is to lead students to reason like mathematicians with respect to 

proof (a position endorsed by Harel & Sowder, 2007), realizing these goals requires 

having a more accurate understanding of mathematical practice than we currently have (a 

position argued by the RAND Mathematics Study Panel, 2003), and we can improve our 

understanding of mathematical practice by carefully observing mathematicians engaged 

in mathematical tasks (see Schoenfeld, 1992). 

 

3. Research Methods 

Data collection. Ten mathematicians participated in a study in which they were asked to 

“think aloud” as they proved that the sine function was not injective on any interval of 

length greater than π. They were told to produce a proof suitable for an undergraduate 

textbook for second and third year mathematics majors. This task was chosen because we 

anticipated the participants would likely draw a graph of the sine function, quickly 

become convinced that the theorem was true as a result of inspecting this graph (or prior 

to constructing it), but nonetheless have some difficulty producing a formal argument that 



this was true. We note in the results section that our assumptions proved to be accurate. 

All interviews were videotaped. 

Analysis. Analysis was conducted in the style of Weber and Mejia-Ramos (2009). We 

first noted every inference the participant made while constructing the proof, where an 

inference could be a mathematical assertion (e.g., sin(x + π) = -sin x), a proving approach 

(e.g., use a proof by cases, use a calculus-based derivative argument), or an evaluation of 

either (e.g., a conjecture is not true, sin(x + π) = -sin x is true but not useful to prove the 

claim). For each inference, we coded whether the inference was made from inspecting the 

appearance of the graph, a logical deduction from some other inference, recall, or from 

some other source (e.g., a metaphor, some other diagram they constructed). Also, for 

each inference, we noted what previous inferences that the new inference was based 

upon. Once this was coded, we looked at the final proof and determined the chain of 

inferences used to produce this written argument. Consequently, for each inference we 

coded, we determined whether it was part of a chain of argumentation that led to the final 

proof or constituted a “dead-end” (i.e., was not directly used to produce the final 

argument). Finally, for each inference that was based on a graph, we used an open-coding 

scheme to categorize how the graph was used to support this inference. 

 

4. Results 

 This was a surprisingly challenging task for mathematicians. One participant was 

unable to complete it successfully and several other mathematicians produced invalid 

proofs. Nine of the ten participants spent between 9 and 40 minutes in completing this 

task. During their proof construction processes, most drew inferences or suggested proof 

approaches that did not play a role in the construction of the proofs they wound up 

producing, suggesting that translating the conviction they obtained from the graph to a 

formal proof was not direct or straightforward. 

 The participants used the graph for six purposes:  

(a) noticing properties and generating conjectures of the sine function that might be 

useful for the proof (e.g. sine is periodic with period 2π ), 

(b) representing or instantiating an assertion or an idea on the graph, 

(c) disconfirming conjectures that are not true (e.g., one participant initially conjectured 

sin(π + x) = sin x and used the graph to reject this conjecture) 

(d) verifying properties that they deduced through logic,  

(e) suggesting proving techniques (such as using the periodicity of the sine function or 

forming a case-based argument) to prove the theorem, 

(f) using the graphs as a justification for claims they wished to make (e.g., noting that a 

student could see that a claim was true by inspecting the graph). 

The extent of participants’ graph usage. The extent of graph usage varied greatly by 

participant, with some frequently interacting with the diagram and others making little 

use of the diagram after it was drawn. Some proofs were not based on any inferences that 

were derived from the graph, suggesting that not all mathematicians write their proofs 

based on the visual arguments they used to obtain conviction. 

Skills needed to use visual diagrams in proof-writing. We identified a number of skills 

that the participant used to utilize the graphical inferences they made into their formal 

proofs. These skills included access to a number of domain specific proving strategies 

(e.g., for a continuous function, proving injectivity and monotonicity are equivalent), 



fluency in algebraic manipulations, and translating logical statements into equivalent 

statements that are easier to work with. 

The limited use of the graph in the final product.  Only one participant included the 

diagram in the proof that he would present in the textbook. This illustrates how 

mathematicians may, perhaps unintentionally, mask the informal processes they use to 

create formal arguments when presenting proofs to their students. When this was pointed 

out to them, some viewed the lack of a graph as a shortcoming of their presentations 

while others did not. 

  

5. Significance 

 The participants’ difficulties with this task shows how challenging it is to base a 

formal proof on visual evidence. Hence, it should be no surprise that students also find 

this process difficult. This study describes the specific ways in which the visual diagrams 

were used by the participants to construct their proofs. It can be beneficial for instructors 

to make students aware of these purposes. The variance in the extent of graphical usage is 

consistent with the arguments of others that there is no single way that mathematicians 

engage in doing mathematics; some mathematicians use diagrams regularly in their 

mathematical work while others do not (e.g., Pinto & Tall, 1999; Alcock & Inglis, 2008). 

Finally, the skills that we outlined are important for students to master if they are to 

successfully use diagrams in their own proof-writing. 
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