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Abstract: A prominent problem in the teaching and learning of undergraduate mathematics is 
how to build on students’ current ways of reasoning to develop more generalizable and abstract 
ways of reasoning. A promising aspect of linear algebra is that it presents instructional designers 
with an array of applications from which to motivate the development of mathematical ideas. 
The purpose of this talk is to report on student reasoning as they reinvented the concepts of span 
and linear independence. The reinvention of these concepts was guided by an innovative 
instructional sequence known as the Magic Carpet Ride problem, whose creation was framed by 
the emergent models heuristic (Gravemeijer, 1999). During our talk we will: explain how this 
instructional sequence differs from a popular “systems of equations first” approach, present the 
instructional sequence via the framing of the emergent models heuristic; and provide samples of 
students’ sophisticated thinking and reasoning. 
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A prominent problem in the teaching and learning of K-16 mathematics is how to build on 
students’ current ways of reasoning to develop more generalizable and abstract ways of 
reasoning. This problem is particularly pressing in undergraduate courses that often serve as a 
transitional point for students as they attempt to progress from more computationally based 
courses to more abstract courses that feature proof construction and reasoning with formal 
definitions. One such course is that of introductory linear algebra. A promising aspect of linear 
algebra, however, is that it presents an array of applications to science, engineering, and 
economics, providing instructional designers with opportunities to use these applications to 
motivate and develop mathematical ideas. The purpose of this talk is to report on student 
reasoning as they reinvented the concepts of span and linear independence. The reinvention of 
these concepts was guided by an innovative instructional sequence known as the Magic Carpet 
Ride problem, whose creation was framed by the emergent models heuristic (Gravemeijer, 1999) 
of the instructional design theory of Realistic Mathematics Education (Freudenthal, 1991). The 
sequence makes use of an experientially real problem setting (in the sense that students can 
readily engage in the task) and aids students in developing more formal ways of reasoning about 
vectors and vector equations. Thus, during our talk we will: 

1. Explain how this instructional sequence differs from a popular “systems of equations 
first” approach and why this conscious change was made; 

2. Present the instructional sequence via the framing of the emergent models heuristic; and  
3. Provide samples of students’ sophisticated thinking and reasoning. 

 
Literature Review 

In addition to research that categorizes student difficulties in linear algebra (e.g., Dorier, 
1995; Harel, 1989; Hillel, 2000), more recent work has examined the productive and creative 
ways that students are able to interact with the ideas of linear algebra. For instance, Possani, 
Trigueros, Preciado, and Lozano (2010) analyzed the use of a teaching sequence that began with 
a real life problem and reported on student progress as they advanced through different solution 
strategies. In a similar spirit, Larson, Zandieh, and Rasmussen (2008) reported a key idea that 
emerged as a central and powerful way in which students came to reason and eventually develop 
the formal ideas and procedures for eigenvalues and eigenvectors. Complementary to these two 
veins of research, we report on students’ activity as they both reinvent and reason with the 
notions of span and linear independence. 

The instructional sequence that was developed to foster student reinvention of these ideas 
does so within the first five days of the course, prior to any explicit treatment of Gaussian 
elimination. This is in contrast to a widespread tendency to begin the semester with systems of 
linear equations and Gaussian elimination (e.g., Anton, 2010; Lay, 2003). One possible reason 
for beginning the course in this manner is to build from students’ prior experiences with solving 
systems of linear equations. We strongly agree with beginning a course with content that has an 
intuitive basis for students. Our instructional sequence, however, relies on a different intuitive 
background from which to build and structure an introductory linear algebra course. Our 
approach begins by focusing on vectors, their algebraic and geometric representations in R2 and 
R3, and their properties as sets. We contend that this switch not only fosters the development of 
formal ways of reasoning about the ‘objects’ of linear algebra, namely vectors and vector 
equations, but also instigates an intellectual need (Harel, 2000) for sophisticated solution 
strategies, such as Gaussian elimination. These aspects will be elaborated upon during the 
presentation.  



 
Theoretical Background 

Drawing on the work of Freudenthal (1991) and the instructional design theory of Realistic 
Mathematics Education (RME), we take the perspective that mathematics is first and foremost a 
human activity of organizing mathematical experiences in increasingly sophisticated ways. A 
central RME heuristic that captures this perspective is referred to as “emergent models.” This 
heuristic offers researchers and teachers a way to design and trace ways that students can build 
on their current ways to reasoning to develop rather formal mathematics. In RME the term model 
has a specific meaning. In particular, Zandieh and Rasmussen (2010) define models as student-
generated ways of organizing their activity with observable and mental tools. Observable tools 
refer to things in the environment, such as graphs, diagrams, explicitly stated definitions, 
physical objects, etc. Mental tools refer to ways in which students think and reason as they solve 
problems—their mental organizing activity. Following Zandieh and Rasmussen, we make no 
sharp distinction between the diversity of student reasoning and the things in their environment 
that afford and constrain their reasoning. 

The emergent model heuristic involves the following four layers of increasingly sophisticated 
mathematical activity: Situational, Referential, General, and Formal. Situational activity involves 
students working toward mathematical goals in an experientially real setting. Referential activity 
involves models-of that refer (implicitly or explicitly) to physical and mental activity in the 
original task setting. General activity involves models-for that facilitate a focus on interpretations 
and solutions independent of the original task setting. Formal activity involves students 
reasoning in ways that reflect the emergence of a new mathematical reality and consequently no 
longer require support of prior models-for activity. The model-of/model for transition is 
therefore concurrent with the creation of a new mathematical reality.  

Methods 
The classroom sessions analyzed for this presentation come from a classroom teaching 

experiment (Cobb, 2000) conducted in the spring of 2010 at a southwestern research university. 
This classroom was the third iteration of a semester-long classroom teaching experiment in linear 
algebra. Video-recordings were made of each classroom episode. Transcriptions were then made 
from the videos. Daily reflections and homework were also collected.   
 
Results 

This section discusses how student reasoning progressed through each of the four levels of 
activity throughout the semester, but especially in relationship to the tasks that students worked 
on during the first five days of class.  Given space limitations, we provide more detail on student 
reasoning at the beginning of the task sequence.  Note that we spent approximately one day per 
task during the semester.   

Situational and Referential Activity. The student thinking on the first two tasks was 
primarily Situational activity in that students focused on engaging in solving problems in the 
Magic Carpet Ride task setting. However, even at this level students were developing symbolic 
and graphical inscriptions that were models of their thinking and that the teacher was able to 
label with the terminology of the mathematical community such as linear combination and span.  
During the third and fourth tasks, student reasoning was more explicitly Referential as students 
used their experience in the Magic Carpet Ride setting to create a definition for the linear 
dependence of two vectors and as they worked to interpret the definition of linear independence 
in terms of the Magic Carpet Ride scenario. 



TASK 1. You are given a hover board and a magic carpet. The hover board can move 
according to <3, 1> and the magic carpet according to <1, 2>. If Old Man Gauss lives in 
a cabin 107 miles East and 64 miles North, can you get there with the board and carpet?   

This activity helped students explore the notion of a linear combination of one or two vectors in 
R2, including its symbolic and graphical representations. The figure below provides two 
examples of student thinking on this problem. On the left students use a non-standard symbolic 
vector notation and a guess and check methodology. On the right the students converted their 
vector equation into a system of equations and solved for the appropriate weights. 

 

 
Guess and check via vector weighting 

 
Vector equation then system 

 
TASK 2. Are there some locations where Gauss can hide and you cannot reach him from 
your home with these two modes of transportation?  

This extension pushes students to explore how a linear combination of two vectors can 
encompass all points in R2 and introduces the term span. The figure below provides two 
examples of student thinking on this problem.  Notice that the board on the left indicates that this 
group of students thought that they could only get to points within the double funnel using the 
two modes of transportation, whereas the group on the right used a grid to illustrate that they 
could reach any point on the plane. 

 

 
The Double Funnel 

 
The Grid 

 
TASK 3. You still have two modes of transportation, but now you cannot get everywhere. 
What are the possible vectors for the movement of the hover board and magic carpet 
now?   



In discussing which sets of vectors span all of R2 and which do not, students defined linear 
dependence for pairs of vectors. In particular, students determined that if two vectors are 
multiples of each other, then they are linearly dependent. 

TASK 4. You may travel each mode of transportation only once.  Can you start and end 
back at home?   

This activity allows for the introduction of the formal definition of linear independence. Students 
were asked to interpret this formal definition in terms of the Magic Carpet Ride task.   

General Activity. In task 5, students are given a series of questions that asks them to create a 
linearly independent (or dependent) set of 2 (or 3 or 4) vectors in R3. Some students were able to 
develop conjectures about what must be true a set of vectors to span a space. One such 
conjecture was that to span Rn, one must have n vectors and they must be linearly independent. 
This is General activity since the students are now working with vectors without referring back 
explicitly to the Magic Carpet activity as they explore properties of these sets of vectors.  	  

Formal Activity. Formal activity occurs much later in the term as students are able to use 
definitions of span or linear independence in the service of making other arguments without 
having to explicitly recreate or reinterpret those definitions.   
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