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Abstract: I present research regarding the development of mathematical meaning in an 
introductory linear algebra class. In particular, I present analysis regarding how students–both 
individually and collectively–reasoned about the Invertible Matrix Theorem over the course 
of a semester. To do so, I coordinate the analytical tools of adjacency matrices and Toulmin’s 
(1969) model of argumentation at given instances as well as over time. Synthesis and 
elaboration of these analyses was facilitated by microgenetic and ontogenetic analyses (Saxe, 
2002). The cross-comparison of results from the two analytical tools, adjacency matrices and 
Toulmin’s model, reveals rich descriptions of the content and structure of arguments offered 
by both individuals and the collective. Finally, a coordination of both the microgenetic and 
ontogenetic progressions illuminates the strengths and limitations of utilizing both analytical 
tools in parallel on the given data set. These and other results, as well as the methodological 
approach, will be discussed in the presentation. 
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 The Linear Algebra Curriculum Study Group (Carlson, Johnson, Lay, & Porter, 1993) 
named the following as topics necessary to be included in any syllabus for a first course in 
undergraduate linear algebra: matrix addition and multiplication, systems of linear equations, 
determinants, properties of Rn, and eigenvectors and eigenvalues. Some of the specific 
concepts involved in the aforementioned topics are: (a) span, (b) linear independence, (c) 
pivots, (d) row equivalence, (e) determinants, (f) existence and uniqueness of solutions to 
systems of equations, (g) transformational properties of one-to-one and onto, and (h) 
invertibility. These concepts, in addition to others, are the very ones addressed and linked 
together in what is referred to as the Invertible Matrix Theorem (see Figure 1). The Invertible 
Matrix Theorem (IMT), which consists of seventeen equivalent statements, is a core theorem 
for a first course in linear algebra in that it connects the fundamental concepts of the course.  

I take the perspective that the emergence and development of mathematical ideas 
occurs not only for each individual student but also for the classroom as a collective whole. 
Many researchers acknowledge in the role of the collective on the mathematical development 
of a learner and vice versa (Hershkowitz, Hadas, Dreyfus, & Schwarz, 2007; Rasmussen & 
Stephan, 2008; Saxe, 2002). Through this viewpoint, the interrelatedness of the individual 
and the collective come to the fore, highlighting how the activity of one necessarily affects 
that of the other. These two forms of knowledge genesis—on an individual and on a 
collective level—are inextricably bound together in their respective developments. Therefore, 
in order to gain the most fully developed understanding of the emergence, development, and 
spread of ideas in a particular classroom, analysis along both individual and collective levels, 
over the course of the semester, is warranted and necessary. 

This presentation will highlight portions of my dissertation research, which has two 
main aspects: (a) research into the learning and teaching of linear algebra, and (b) research 
into analyzing the development of mathematical meaning for both students and the classroom 
over time. The two research questions that guide my dissertation work are the following:  

1. How do students –both individually and collectively—reason about the 
Invertible Matrix Theorem over time?  

2. How do students—both individually and collectively—reason with the 
Invertible Matrix Theorem when trying to solve novel problems? 

The first research question investigates the connections that are made, on both the individual 
and the collective level, between the various statements in the IMT. The second research 
question investigates the ways in which students, on both the individual and the collective 
level, use the IMT as a tool for reasoning about new problems. During my presentation, I will 
discuss results from both individual and collective-level analyses from question one. 
 
Background and Methodology 

The theoretical perspective on learning that undergirds my work is the emergent 
perspective (Cobb & Yackel, 1996), which coordinates psychological constructivism (von 
Glasersfeld, 1995) and interactionism (Forman, 2003; Vygotsky, 1987). In honoring the 
importance of both psychological and social processes, the emergent perspective posits that: 

The basic relationship posited between students’ constructive activities and the social 
processes in which they participate in the classroom is one of reflexivity in which 
neither is given preeminence over the other...A basic assumption of the emergent 
perspective is, therefore, that neither individual students’ activities nor classroom 
mathematical practices can be accounted for adequately except in relation to the 
other.” (Cobb, 2000, p, 310) 

From the perspective that learning is both an individual and a social process, investigating the 
mathematical development of students necessarily involves considering the individual 



development of students as well as the collective activity and progression of the community 
of learners in which the individuals learners participate. Thus, in studying the development of 
reasoning regarding the Invertible Matrix Theorem, both levels of development will be 
analyzed.  

The overarching structure of my analysis is influenced by a framework of genetic 
analysis that delineates multiple levels of investigation. Saxe (2002) and his colleagues (Saxe 
& Esmonde, 2005; Saxe, Gearhart, Shaughnessy, Earnest, Cremer, Sitabkhan, et al., 2009) 
investigated knowledge development through the notion of cultural change. Particular to 
development in the classroom, the authors investigated how researchers could collect data 
(how much, from what sources, etc.) and conduct analyses that would allow them to make 
descriptions of how individuals’ ideas develop in the classroom over time, given that the 
classroom is also changing over time. As a response, they suggested analyzing human 
development over time from three different strands, providing researchers a way to account 
for some of the complex factors of development. Microgenesis is defined as the short-term 
process by which individuals construct meaningful representations in activity, ontogenesis as 
the shifts in patterns of thinking over the development of individuals, and sociogenesis as the 
reproduction and alteration of representational forms that enable communication among 
participants in a community (Saxe et al., 2009, p. 208). I focus on and adapt the first two 
strands in my own analysis. 

The data for this study comes from a semester-long classroom teaching experiment 
(Cobb, 2000) conducted in a linear algebra course at a large university in the southwestern 
United States. Students enrolled in the course had generally completed three semesters of 
calculus and were in their second, third, or fourth year of university. Furthermore, the 
majority of students enrolled in the course had chosen engineering (computer, mechanical, or 
electrical), mathematics, or computer science as their major course of study at the university.  

In order to address the individual components in the proposed research questions, I 
focused on five of the students enrolled in the linear algebra course. All five sat at the same 
table during class, which is one of three tables that are videorecorded during every class 
period for the duration of the semester. In order to collect data relevant to these five 
individuals and their establishment of meaning regarding the IMT, I collected four sources of 
data: video and transcript of whole class discussion, video and transcript of their small group 
work, video and transcript from their individual interviews, and various written work. 
Individual interview data comes from two semi-structured (Bernard, 1988) interviews, one 
conducted midway through the semester and one conducted at the end of the semester.  

In order to collect data relevant to the collective establishment of meaning regarding 
the IMT, I collected video and transcript of whole class discussion and small group work, 
photos of whiteboard work, and written work from in-class activities. As stated, portions of 
12 class days are analyzed, which were the days that the IMT was explicitly addressed during 
whole class discussion.  

In order to investigate how students reasoned about the IMT over time, I utilize five 
analytical phases, and each has both an individual and a collective level. The five phases are: 
1) Microgenetic analysis via the construction of adjacency matrices; 2) Microgenetic analysis 
via the construction of Toulmin schemes of argumentation; 3) Ontogenetic analysis of 
constructed adjacency matrices; 4) Ontogenetic analysis of constructed Toulmin schemes,; 
and 5) Coordination of analysis across the two analytical tools. As highlighted in the five 
phases, I employ two main analytical tools: adjacency matrices and Toulmin’s (1969) model 
of argumentation. Adjacency matrices are representational tools from graph theory used to 
depict how the vertices of a particular graph are connected (e.g., Frost, 1992). These matrices 
can be used to represent data from a variety of graph forms. In my dissertation, I create 
adjacency matrices that correspond to directed graphs in which the vertices are the statements 



in the Invertible Matrix Theorem (or students’ explanations of those statements) and the 
edges are directed in such a way as to match the implication offered by the student. The 
developed adjacency matrices are n x n, where n is the number of recorded relevant yet 
distinct statements made by students in any given explanation. The rows are the ‘p’ and the 
columns are the ‘q’ in statements of the form “p implies q” or “another way to say p is q.” 
Adjacency matrices are used as a tool to analyze explanations that explicitly address how 
students connect the ideas of the Invertible Matrix Theorem, as well as to analyze arguments 
made at the collective level during whole class discussion. These arguments are comprised of 
statements from one or many students in the class as meaning is negotiated collectively 
through participation in the classroom.  

The second main analytical tool I use is Toulmin’s (1969) model of argumentation, 
which describes six main components of an argument: claim, data, warrant, backing, 
qualifier, and rebuttal. The first three of these—claim, data, and warrant—are seen as the 
core of an argument. According to this scheme, the claim is the conclusion that is being 
justified, whereas the data is the evidence that demonstrates that claim’s truth. The warrant is 
seen as the explanation of how the given data supports the claim, and the backing, if 
provided, demonstrates why the warrant has authority to support the data-claim pair. This 
work has been adapted by many in the fields of mathematics and science education research 
as a tool to assess the quality or structure of a specific mathematical or scientific argument 
and to analyze students’ evolving conceptions by documenting their collective argumentation 
(Erduran, Simon, & Osborne, 2004; Krummheuer, 1995; Rasmussen & Stephan, 2008; 
Yackel, 2001). While the Toulmin model has proven a useful tool for documenting 
mathematical development at a collective level (e.g., Stephan & Rasmussen, 2002), I utilize 
Toulmin’s model to analyze structure of individual and collective exchanges both in isolation 
and as they shift over time.  

While Phases 1 and 2 are comprised of many discrete analyses, Phases 3 and 4 are 
compiled from the results of Phases 1 and 2. In Phase 3, shifts in form and function of how 
students reason about reason with the various concepts in the IMT over time are analyzed by 
considering qualitative changes in constructed adjacency matrices from Phase 2. This type of 
analysis is what Saxe (2002) refers to as ontogenetic analysis. Phase 4, on the other hand, 
considers the individually constructed Toulmin schemes from Phase 2 as a whole. This sort 
of analysis, at the collective level, is consistent with the work of Rasmussen and Stephan 
(2008) in identifying classroom mathematics practices. Finally, Phase 5 combines the work 
done in parallel with adjacency matrices and Toulmin schemes on both the microgenetic level 
(comparing the results of Phases 1 and 2) and the ontogenetic level (Phases 3 and 4). In other 
words, Phase 5 consists of cross-comparative analyses, for any given argument or collection 
of arguments, of the results from both analytical tools (adjacency matrices and Toulmin 
schemes).  

 
Results 

The cross-comparison of results from the two analytical tools, adjacency matrices and 
Toulmin’s model, provides a rich way to investigate the content and structure of arguments 
offered by both individuals and the collective. A coordination of both the microgenetic and 
ontogenetic progressions illuminates the strengths and limitations of utilizing both analytical 
tools in parallel on the given data set. Analysis reveals rich student reasoning about the IMT 
that may not be apparent through use of only one analytical tool. For instance, adjacency 
matrices proved an effective analytical tool on arguments consisting of multiple connections 
that were for explanation, whereas Toulmin models proved illuminating for arguments with 
complex structure for the purposes of conviction. These and other results, as well as my 
methodological approach, will be discussed during my presentation. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure One: The Invertible Matrix Theorem 
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