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Abstract 

We apply a Vygotskian perspective on the interplay between spontaneous and scientific concepts 

to identify and characterize calculus students’ idiosyncratic use of examples in the process of 

trying to formulate a rigorous definition for convergence of a sequence. Our data is drawn from a 

larger teaching experiment, but analyzed for this study to address questions of the origins, nature, 

and implications of students’ nonstandard ways of reasoning. We observed two students 

interpreting a damped oscillating sequence as divergent, drawing from considerations from an 

initial, intuitively-framed definition, but remaining persistent and consistent over the duration of 

multiple sessions. We also trace some of the implications of their idiosyncratic reasoning for 

their reasoning and ultimately for their definition of convergence. We conclude by posing several 

questions about the nature of such example use in terms of our Vygotskian perspective. 
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Introduction and Research Questions 

The research literature on students’ understanding of limit concepts in introductory 

calculus courses is replete with idiosyncratic imagery related to informal notions and ontological 

commitments regarding infinity (Sierpinska, 1987; Tall, 1992; Tirosh, 1991), infinitesimals 

(Artigue, 1991; Tall, 1990, Oehrtman, 2009), the structure of the real numbers (Cornu, 1991; 

Tall & Schwarzenberger, 1978), incidental and misleading aspects of graphical representations 

(Monk, 1994; Orton, 1983), nonmathematical concepts such as speed limits, physical barriers, 

and motion (Davis & Vinner, 1986; Frid, 1994; Oehrtman, 2009; Tall, 1992; Tall & Vinner, 

1981; Thompson, 1994; Williams, 1991), and epistemological beliefs about mathematics in 

general (Sierpinska, 1987; Szydlick, 2000; Williams, 1991, 2001). Little research, however, has 

provided an in-depth look at the origins, nature, and implications of a single idiosyncratic image 

over the course of significant reasoning and problem-solving activity. As part of a larger 

teaching experiment, we established protocols to attempt to identify idiosyncratic images, should 

they appear, as calculus students try to formulate a precise definition of convergence of a 

sequence. The aim of this study was to address the following research questions:  

1. What idiosyncratic examples do students construct as the wrestle with reinventing a 

formal definition for sequence convergence? 

2. What are the origins of these idiosyncratic examples? 

3. What are the effects of students’ idiosyncratic examples on their emerging understanding 

of a formal definition for sequence convergence? 



Theoretical Perspective 

We base our study design and analysis on Lev Vygotsky’s (1978, 1987) characterization 

of conceptual development as a complex interplay between intuitive (spontaneous) and formally 

structured (scientific) thought. These two types of thought are distinguished by their relationship 

to the objects of reference and by the nature of thought available to them. Spontaneous concepts 

develop first through a direct encounter with the object and form the basis of experiential 

knowledge developed informally over long periods of time. They are intuitive in nature and can 

be applied spontaneously, without conscious reflection on their meaning, but are not available 

for application to problems in non-concrete situations. Scientific concepts emerge later through a 

mediated relationship to the object, such as a verbal definition. They are expressed and initially 

applied only in abstract ways affording quick mastery of operations and relationships, but they 

are disconnected from personal experience or meaning. 

Especially within a field as structurally rich as mathematics, scientific concepts are 

distinguished by their systematicity. Within a spontaneous concept system, where the only 

relationships possible are relationships between objects (and not between concepts), verbal 

thinking is governed by the logic of graphic imagery and thus is highly dependent on perception. 

Corresponding concepts are presyncretic, that is, they are not tied to other concepts in 

meaningful ways. It is the appearance of higher order concepts that allows this to change; the 

unification of concepts within a single structure allows for the comparison and analysis of 

subordinate concepts. To recognize contradictions or evaluate one conceptualization against 

another, the individual must understand two different concepts as relating to the same thing 

within a single superordinate structure. Comprehending the structure of a scientific concept, 

therefore, requires the learner to develop higher levels of reasoning, to form new categories of 

relationships, and to generalize.  

The strengths of the scientific concept are the weaknesses of the spontaneous concept, 

and vice-versa. By means of their complementarities, each one lays the foundation for the 

development of the other. The development of the scientific concept is mediated by the 

spontaneous concept as intuitive modes of analysis become available to it. The spontaneous 

concept is in turn transformed through this mediation much in the same way that one’s native 

language is transformed when it mediates the learning of a foreign language. The structure 

provided by the scientific concept enables the spontaneous concept to grow and become more 

available to abstract functioning. 

Outpacing of development, one purpose of instruction is to encourage in the student 

conscious awareness and volitional use of their spontaneous knowledge. This occurs as thinking 

is modeled within a system that is just beyond the current comprehension of the student but 

within their ability to imitate. Vygotsky argues that imitation is not an act of thoughtless mimicry 

but rather requires a beginning grasp of the structure of the system, noting that animals cannot 

imitate except through training. As opposed to performing a trained behavior, a student can only 

spontaneously imitate if the task lies within the zone of his or her own intellectual potential, the 

so-called “zone of proximal development.” 

Methods 

The authors conducted a multi-day teaching experiment with two calculus students at a 

large, southwest, urban university. For this presentation, we report results from the first two 90-

minute sessions of the study. The central objective of this portion of the teaching experiment was 



for the students to generate rigorous definitions of sequence convergence based on initial activity 

in which they generated examples of sequences that converge to 5 and sequences that do not 

converge to 5. These examples were then intended to i) motivate a need to generate a statement 

that was true of all sequences that converge to 5 but false of all sequences that do not converge to 

5, ii) serve as images of their intuitive understanding of convergence against which they could 

test their definition, and iii) identify ways in which their definition needed refinement. The 

sessions were videotaped and transcribed, and we analyzed the data to first identify any 

examples of sequences that were improperly classified relative to their convergence or that were 

characterized in non-standard ways. We then identified all passages in the transcripts where 

students referred to these examples and looked for evidence of the origins of their non-standard 

interpretations, details of the ways in which they used these examples, and implications of their 

use of these examples. 

Results 

The students participating in the teaching 

experiment, pseudonyms Megan and Belinda, 

described several examples of sequence in non-

standard ways during the teaching experiment, but 

most of these descriptions were not persistent. Nor 

did they use most of their idiosyncratic images to 

explicitly draw inferences about their definitions. 

One example, however, persisted over time and 

had wide-ranging implications for their reasoning 

and ultimately for their definition of a convergent 

sequence. Megan and Belinda both agreed that 

their example of a damped oscillating series (see 

Figure) would not converge because they noted 

Megan: No matter how close it gets though there's going to be a point, you know where 

Belinda: Where it's still moving away 

Megan: It's still gonna come away every so often. And that, that coming away feels like 

it's not convergent.  

 Megan first suggested that this series would be divergent after trying to apply an early 

definition including the phrase “at some point N, it becomes closer and closer” to the example 

and concluding that since it was originally in their list of examples that converge to 5, it must 

eventually become monotonic. When one of the researchers asked “What if it continued to go 

away and come back and go away, but always going away less, would it be convergent?” she 

insisted it must then be placed in the category of examples not converging to 5, to which Belinda 

strongly agreed. Subsequently, both students continually returned to this example during the first 

two days of the teaching experiment and cited it’s divergence as a reason to include statements 

like “and always gets closer to 5” or “|5 – an+1|< |5 – an|” in their definition of a sequence {an} 

converging to 5. Even though they recognized that “for any chosen acceptable error range, there 

would be some point after which |5 – an| does not exceed [that bound],” they still insisted that 

this sequence was divergent since the “errors don’t get smaller.” 

 Megan and Belinda were amazingly consistent in their nonstandard interpretation of this 

example and raised logical counterarguments to any suggestions made by the researchers why 



one might consider the damped oscillating series to be convergent. They even suggested adding 

the phrase “or is always 5” to their definition to include the constant sequence an=5 as 

convergent but still be able to keep their statement “|5 – an+1|< |5 – an|.” Thus we see that 

although their reasoning is highly idiosyncratic, it is also systematically structured and applied 

volitionally with conscious awareness. 

Questions 

In our presentation, we will show video clips tracing the origins of Megan and Belinda’s 

idiosyncratic interpretation of the convergence for a damped oscillating sequence, the nature of 

their arguments about the sequence, the effects they had on their definitions, and finally the 

method by which we convinced the students to alter their definition to include this sequence as 

convergent. We are interested on feedback from the audience on the following questions: 

1. Is the reasoning of these students appropriately characterized as spontaneous, scientific, 

or neither? What are the implications of this? 

2. Given the idiosyncratic but logical and consistent reasoning illustrated, what is the nature 

of the zone of proximal development for these students? 

3. How might instruction mediate a productive interaction for these students with the 

standard interpretation held by the mathematics community? 

References 

Artigue, M. (1991). Analysis. In D. Tall (Ed.), Advanced mathematical thinking (pp. 167–198). 

Dordrecht, The Netherlands: Kluwer. 

Cornu, B. (1991). Limits. In D. O. Tall (Ed.), Advanced Mathematical Thinking (pp. 153-166). 

Dordrecht, The Netherlands: Kluwer Academic Publishers. 

Davis, R. B., & Vinner, S. (1986). The notion of limit: Some seemingly unavoidable 

misconception stages. Journal of Mathematical Behavior, 5, 281-303. 

Frid, S. (1994). Three approaches to undergraduate calculus instruction: Their nature and 

potential impact on students’ language use and sources of conviction. In E. Dubinsky, A. 

H. Schoenfeld, & J. Kaput (Eds.), Issues in mathematics education: Vol. 4. Research in 

college mathematics education I (pp. 69–100). Providence, RI: American Mathematical 

Society. 

Monk, G. (1994). Students’ understanding of functions in calculus courses. Humanistic 

Mathematics Network Journal, 9, 21–27.  

Oehrtman, M. C. (2008). Layers of abstraction: Theory and design for the instruction of limit 

concepts. In M. P. Carlson & C. Rasmussen (Eds.), Making the Connection: Research 

and Teaching in Undergraduate Mathematics Education (Vol. 73, pp. 65-80). 

Washington, DC: Mathematcial Association of America. 

Orton, A. (1983). Students’ understanding of differentiation. Educational Studies in 

Mathematics, 14, 235–250. 

Sierpinska, A. (1987). Humanities students and epistemological obstacles related to limits. 

Educational Studies in Mathematics, 18, 371–397. 

Szydlick, J. (2000). Mathematical beliefs and conceptual understanding of the limit of a function. 

Journal for Research in Mathematics Education, 31, 258–276.Tall, 1990,  



Tall, D. (1992). The transition to advanced mathematical thinking: Functions, limits, infinity, and 

proof. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning 

(pp. 495–511). New York: Macmillan. 

Tall, D., & Schwarzenberger, R. (1978). Conflicts in the learning of real numbers and limits. 

Mathematics Teaching, 82, 44–49. 

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with 

particular reference to limits and continuity. Educational Studies in Mathematics, 12, 

151–169. 

Thompson, P. (1994). Images of rate and operational understanding of the Fundamental Theorem 

of Calculus. Educational Studies in Mathematics, 26, 229–274. 

Tirosh, D. (1991). The role of students’ intuitions of infinity in teaching the Cantorian Theory. In 

D. Tall (Ed.), Advanced mathematical thinking (pp. 199–214). Dordrect, The 

Netherlands: Kluwer.  

Vygotsky, L. (1987). The development of scientific concepts in childhood. In R. W. Rieber & A. 

S. Carton (Eds.), Problems of general psychology: Vol. 1. The collected works of L. S. 

Vygotsky (pp. 167–241). New York: Plenum. (Original work published 1934) 

Vygotsky, L. (1978). Mind in Society: The Development of Higher Psychological Processes. 

Cambridge, Massachussetts: Harvard University Press. 

Williams, S. R. (1991). Models of limit held by college calculus students. Journal for Research 

in Mathematics Education, 22(3), 219-236. 

Williams, S. (2001). Predications of the limit concept: An application of repertory grids. Journal 

for Research in Mathematics Education, 32, 341–367. 


