
The Treatment of Composition the Secondary and Early College Mathematics Curriculum 
Aladar Horvath 

Michigan State University 
 
While many studies have focused on student knowledge of function, few studies have focused on 
composition. This report describes a curriculum analysis of the treatment of composition in the 
secondary (algebra, geometry, algebra 2, precalculus) and early college (precalculus, calculus) 
mathematics curriculum. In this study composition is conceptualized as a sequence of functions 
and as a binary operation on functions. The curriculum analysis utilizes a framework of 
conceptual, procedural, and conventional knowledge elements as well as representations and 
types of functions. Preliminary data will be presented during the session and a discussion will 
center on conceptual, procedural, and conventional knowledge elements for composition. 
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The function concept is an essential topic to the undergraduate mathematics curriculum 

and to mathematics, in general. Freudenthal (1983) stated, “The strength of the function concept 
is rooted in the new operations - composing and inverting functions” (p. 523). The operation of 
composition is vastly different than the arithmetic operations (i.e., addition, subtraction, 
multiplication, division) that students encounter in elementary school. For example, composition 
is applied to mathematical objects such as functions (including constant functions), relations and 
transformation, but not to numbers. While educational researchers have extensively studied 
student knowledge of function (Carlson, 1998; Even, 1990, 1998; Ferrini-Mundy & Graham, 
1991; Leinhardt, Zaslavsky, & Stein, 1990; Monk, 1994; Oehrtman, Carlson, & Thompson, 
2008; Vinner & Dreyfus, 1989), research on the teaching and learning of the operation of 
composition has received little attention (Engelke, Oehrtman, and Carlson, 2005). 

The existing research on composition has documented that the learning of composition is 
nontrivial for students. Research on the learning of topics built upon composition (i.e., chain 
rule) has reported that students’ difficulties are related to a weak foundation of composition 
(Clark et al., 1997; Horvath, 2008). Studies of composition have focused on student knowledge 
or the output of learning. None have reported on the teaching of composition or on the written 
curriculum or the input of learning except for one study that focused on the genetic 
decomposition (Ayers et al., 1988). The study reported here is a beginning to fill this gap through 
a curriculum analysis on the treatment of composition in secondary (algebra, geometry, algebra 
2, precalculus) and early collegiate (precalculus, calculus) mathematics textbooks. While the 
written curriculum does not determine what teachers teach or what students learn, the written 
curriculum influences both (Remillard, Herbel-Eisenmann, & Lloyd, 2009). The research 
questions guiding this work are: In what ways is the concept of composition developed across 
the algebra to calculus curriculum? Is there a difference between the way composition is treated 
in the secondary curriculum and college precalculus and calculus curriculum and if so, what are 
the characteristics of that gap?  

In this study composition is conceptualized in two ways which relate to the notations of 
g(f (x)) and (g ◦ f)(x). First is the sequence view of composition. In this view, g(f (x)) denotes a 
sequence of functions where f corresponds x to f (x) and g corresponds f (x) to g(f (x)). Thus, the 
output of f, f (x), is the input of g and it is the elements x and f (x) that are being acted upon. In 



general, this view of composition describes composition as a sequence of recursive relations 
(including functions) where the input of the nth term is the output of the (n-1)th term. Carlson, 
Oehrtman, and Engelke (2010) described this as a process view of composition, while Harel and 
Kaput (1991) referred to this process of “acting on individual elements of [the] domain” and 
called it a point-wise operation (p. 84).  

The other conceptualization of composition is the operation view of function. In this 
view, (g ◦ f)(x) is a binary operation on two functions, f and g, resulting in a new function g ◦ f. In 
this case functions are the objects being acted upon and not simply their domain and range 
elements. Others who have written about replacing processes with objects include Asiala et al. 
(1996) using the term encapsulation, Sfard (2008) using the term reification, and Martin (1991) 
using the term of nominalization which is a specific case of Halliday’s (1985, 1995) grammatical 
metaphor. The common feature among these perspectives is that processes (or verbs) are treated 
as entities (or nouns) which become the objects of other actions and procedures (or verbs). For 
example, the function f (x) = x2 can be viewed as the process of corresponding any number to its 
square.  Composing the function g(x) = 2x + 4 with f (x) can be viewed as “plugging in” f(x) into 
the x’s in the g(x) function resulting in g(f (x)) = 2(f (x)) + 4 or g(f (x)) = 2(x2) + 4. In this 
situation, f (x) is treated as an object and not as a correspondence between its domain and range. 

Research on the sequence view of composition has reported students have interpreted the 
composition statement of f (g(3) as the multiplication statement of f (3) · g(3) (Engelke et al., 
2005, Meel 1999). These studies have reported students interpreting composition as 
multiplication while using formulas, graphs, and tables. Research has also shown that students 
have different success rates on composition problems in different representations.  When asked 
to evaluate g(f (2), Carlson et al. (2010) reported that 94% of students were successfully given 
two algebraic functions, 50% with graphical functions and 47% with tabular functions. Hassani 
(1998) reported students’ success rates as 84%, 10%, and less than 50% for algebraic, graphical, 
and tabular, respectively. When the task was rephrased to evaluate (g ◦ f )(2) the success rates of 
students in Hassani’s study changed to 35%, 25% and 33%, respectively. In an interview with a 
student in a developmental algebra course DeMarois & Tall (1996) reported that he was able to 
complete a composition task using the table with considerable guidance from the interview, was 
then unable to begin graphical composition task, but following that he was successful with 
minimal guidance on the algebraic composition task. This research implies that algebraic 
composition tasks are easier for students than other representations. One explanation has claimed 
that this is due to a curriculum that is heavily algebraic and that students have had more exposure 
and experience with dealing with the algebraic representation (Hitt, 1998). However, a 
curriculum analysis has not been conducted to empirically validate such claims. 

Research on the operation view of composition has reported that students frequently 
implement this view by plugging in or substituting the one function for a variable in the other 
function (Ayers, et al., 1988; Carlson, 1998; Horvath, 2010; Uygur & Ozdas, 2007) or by 
interpreting composition as multiplication (Horvath, 2010; Meel, 1999). The difference in the 
multiplication between the sequence view and the operation view is that students not only 
multiply numbers, but are also multiplying objects such as functions. This interpretation appears 
symbolically as (f ◦ g)(x) = f (x) · g(x).  

This study uses the conceptual knowledge and procedural fluency framework to study 
curriculum materials. Many scholars have participated in the debate of conceptual and 
procedural knowledge.  Piaget, Tulving, Anderson, Scheffler, and Skemp are a few who have 
done so.  Hiebert and Lefevre (1986) described conceptual knowledge as knowledge that is rich 



in relationships and is like a network where both the vertices and the edges (words taken from 
Graph Theory) are essential and of equal importance.  “In fact, a unit of conceptual knowledge 
cannot be an isolated piece of information” and the individual must consciously recognize links 
to other information (p. 4).  They described procedural knowledge in two components. “One part 
is composed of the formal language, or symbol representation system, of mathematics.  The 
other part consists of the algorithms, or rules, for completing mathematical tasks” (p. 6).   

For this study of curriculum conceptual knowledge includes definitions and properties of 
composition such as the associativity and commutativity (in rare situations), the non-uniqueness 
of decomposition, etc. Procedural fluency elements performance of procedures and algorithms 
such as evaluate the composition, find the domain, decompose a function, etc. Vocabulary of 
important terms and notation is placed under the separate category called Conventional 
Knowledge Elements. This would include items such as the parenthetic f(g(x)) and circle, f ◦ g, 
notations and what objects are described as being “composite.” Other major categories in this 
study’s framework are Representation (i.e., algebraic, graph, table) and Function Type (i.e., 
polynomial, trigonometric, exponential, logarithmic, piece-wise). 

Method 
In order to better understand the potential influence of the written curriculum on what 

opportunities to learn students have, this study analyzes the development of the concept of 
function composition in written curriculum over the span from Algebra to Calculus. High school 
curricula will be analyzed to study examples of the ways in which students are introduced to 
composition in high school (CCSS-M, 2010). The texts to be analyzed will include entire series 
of Algebra 1 and 2, Geometry, and Precalculus. The notion of composition is developed further 
in calculus which many students study in college. Thus, collegiate Precalculus and Calculus texts 
will also be analyzed. The duplication of the precalculus text at both the high school and college 
level will help identify any differences between the preparation for calculus at the different 
levels. 

The two secondary mathematics curriculum series to be analyzed are Glencoe/McGraw 
Hill Mathematics (2010/2011) and the CME Project (2009). Glencoe Mathematics was chosen 
due to its large share of the secondary school market (see Dossey et al., 2008).  The CME Project 
materials were chosen to be the second series because it has been developed more recently and 
have different features that provide a broader view of the treatment of composition across 
curricula. At the collegiate level, a widely used precalculus and calculus series was determined 
by surveying approximately 100 Department of Mathematics’ websites and identifying the texts 
used for calculus and precalculus courses. The institutions chosen for the survey are those 
classified as very research intensive in the Carnegie Classification.This survey was conducted in 
June 2010. The survey results identified Calculus: Early Transcendentals, 6th edition (2008) by 
Stewart and Precalculus: Mathematics for Calculus, 5th edition (2006) by Stewart, Redlin, and 
Watson as the most widely used calculus and precalculus texts, respectively. The second 
precalculus and calculus text to be analyzed is Functions Modeling Change: A Preparation for 
Calculus, 4th edition (2011) by Connally, Hughes-Hallett, Gleason, et al. and Calculus, 5th 
edition (2009) by Hughes-Hallett, Gleason, McCallum, et al., respectively. 

The content included in the analysis was determined by the following criteria. These 
criteria include both the explicit development and implicit use of composition. Any lesson that 
includes exposition regarding function composition in the student or teacher edition is considered 
to be explicitly developing the concept of composition.  In those situations the entire lesson was 
included in the analysis.  Lessons on function operations, inverse function, and composition of 



geometric transformations are examples of explicit development. For implicit uses of 
composition, only the sentence (if in the exposition) or the example will be included in the 
analysis. A few examples of implicit use of composition include translations of graphs, solving 
equations involving trigonometric functions with non-trivial angles. Exercises and review 
problems that explicitly or implicitly use composition were also included.  

The results of this study will be important for secondary and university mathematics 
teachers as well as curriculum developers. It may reveal aspects of composition that are over- or 
under-emphasized. It will also inform college instructors on how students have been prepared by 
the secondary curriculum with respect to what is expected in the early calculus curriculum. 

Questions to be posed to the audience 
What do you consider to be a conceptual knowledge element or task for composition? 
What topics (e.g., inverse function, chain rule) do you consider as explicit use of composition? 

References 
Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A 

framework for research and development in undergraduate mathematics education. 
Research in Collegiate Mathematics Education, 2, 1-32.  

Ayers, T., Davis, G., Dubinsky, E., & Lewin, P. (1988). Computer experiences in learning 
composition of functions. Journal for Research in Mathematics Education, 19(3), 246-
259. 

Carlson, M. P. (1998). A cross sectional investigation of the development of the function 
concept.  CBMS Issues in Mathematics Education Vol 7.  114-162. 

Carlson, M., Oehrtman, M., and Engelke N. (2010). The precalculus concept assessment: A tool 
for assessing students' reasoning abilities and understandings. Cognition and Instruction, 
28(2), 113-145. 

Clark, J., F. Cordero, J. Cottrill, B. Czarnocha, D. DeVries, D. St. John, T. Tolias, & D. 
Vidakovic.  (1997). Constructing a schema:  The case of the chain rule.  Journal of 
Mathematical Behavior.  16(4), 345-364.   

Common Core State Standards for Mathematics (CCSS-M) (2010).  
DeMarois, P. & Tall, D. (1996). Facets and layers of the function concept. In ---------- (Eds.) 

Proceedings of PME 20, vol 2. (pp. 297-304). Valencia. 
Dossey, J., Halvorsen, K., & McCrone, S. (2008). Mathematics education in the United States 

2008: A capsule summary factbook. Reston: National Council of Teachers of 
Mathematics. 

Engleke, N., Oehrtman, M., & Carlson, M. (2005). Composition of function: Precalculus 
students’ understandings. In Lloyd, G. M., Wilson, M., Wilkins, J. L. M., & Behm, S. L. 
(Eds.).  Proceedings of the 27th annual meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education, Roanoke, VA. 

Even, R. (1990). Subject matter knowledge for teaching and the case of functions. Educational 
Studies in Mathematics, 21(6), 521-544. 

Even, R. (1998). Factors involved in linking representations of functions.  Journal of 
Mathematical Behavior. 17(1), 105-121.  

Ferrini-Mundy, J. & Graham, K. G. (1991).  An overview of the calculus curriculum reform 
effort: Issues for learning, teaching, and curriculum development.  The American 
Mathematical Monthly.  98(7), 627-635. 

Freudenthal, H. (1983). Didactical Phenomenology of Mathematical Structures. Dordrecht: D. 
Reidel Publishing Company. 



Halliday, M. A. K. (1985). An introduction to functional grammar. London: Edward Arnold. 
Halliday, M. A. K. (1995). Language and the theory of codes. In A. R. Sadovnik (Ed.) 

Knowledge and Pedagogy: The Sociology of Basil Bernstein (pp. 127-144). Norwood, 
NJ: Ablex Publishing Corporation. 

Harel, G. & Kaput, J. (1991). The role of conceptual entities in the construction of advanced 
mathematical concepts and their symbols. In D. O. Tall (ed.). Advanced Mathematical 
Thinking. (pp. 82-94).  

Hassani, S. (1998).  Calculus students’ knowledge of the composition of functions and the chain 
rule.  Unpublished doctoral dissertation, Illinois State University, Normal. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An 
introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The 
case of mathematics (pp. 1-27). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Hitt, F. (1998). Difficulties in the articulation of different representations linked to the concept of 
function.  Journal of Mathematical Behavior. 17(1), 123-134. 

Horvath, A. (2008). Looking at calculus students' understanding from the inside-out: The 
relationship between the chain rule and function composition. Proceedings of the 11th 
Annual Conference on Research in Undergraduate Mathematics Education, San Diego, 
CA.  

Horvath A. K. (2010). Calculus students, function composition, and the chain rule. Proceedings 
of the 32nd annual meeting of the North American Chapter of the International Group for 
the Psychology of Mathematics Education, Columbus, OH.  

Leinhardt, G., Zaslavsky, O., & Stein, M. (1990). Functions, graphs, and graphing Tasks, 
learning, and teaching. Review of Educational Research, 60(1), 1-64. 

Martin, J. R. (1991). Nominalization in science and humanities: Distilling knowledge and 
scaffolding text. In E. Ventola (Ed.) Functional and Systemic Linguistics (pp. 307-337). 
Berlin: Mouton de Gruyter. 

Meel, D. E. (1999). Prospective teachers’ understandings: Function and composite function.  
Issues in the Undergraduate Mathematics Preparation of School Teachers: The Journal.  
1, 1-12. 

Monk, G. (1994).  Students’ understanding of functions in calculus courses.  Humanistic 
Mathematics Network Journal.  9, 21-24. 

Oehrtman, M., M. Carlson, and P. W. Thompson. (2008). Foundational reasoning abilities that 
promote coherence in students’ function understanding. In Making the Connection: 
Research and Practice in Undergraduate Mathematics, MAA Notes Volume 73, eds. M. 
Carlson and C. Rasmussen, 27-41. Washington, DC: Mathematical Association of 
America. 

Remillard, J. T., Herbel-Eisenmann, B. A., & Lloyd, G. M. (Eds.) (2009). Teachers at work: 
Connecting curriculum materials and classroom instruction. New York: Routledge 
Taylor, and Francis. 

Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, 
and mathematizing.  Cambridge, UK: Cambridge University Press. 

Uygur T., & Ozdas, A. (2007). The effect of arrow diagrams on achievement in applying the 
chain rule. Primus, 17(2), 131-147. 

Vinner & Dreyfus, (1989). Images and definitions for the concept of function. Journal for 
Research in Mathematics Education, 20(4), 356-366. 

 


