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Introduction 

Operations research—and in particular, optimization—is one of the key courses in many 
universities’ engineering curricula. An optimization model (or mathematical program) is a 
mathematical representation of a decision-making problem, consisting of variables that reflect 
the decisions to be made, and an objective function to be minimized or maximized, subject to a 
set of mathematical constraints on the variables. Formulating a valid optimization model from a 
verbal description of a decision-making, problem is perhaps the most important skill taught in an 
optimization course aimed at undergraduate students, since excellent modeling skills are vital to 
putting optimization techniques into practice. However, though undergraduate engineering 
students have been engaging in modeling activities (i.e., mathematical “word” or “story” 
problems) since elementary school, many students find it difficult to learn how to build good 
optimization models. Many educators in operations research anecdotally report this phenomenon 
(e.g., Sokol 2005), but little work has been done on systematically understanding why 
optimization modeling is such a difficult skill to learn and how such insights can lead to effective 
modeling pedagogies. By effectively teaching optimization modeling skills, we can provide our 
students with a powerful set of tools that can help solve important, complex problems in 
engineering, mathematics, and management. 

The objective of this study is to help undergraduate engineering students overcome their 
difficulties in optimization modeling by 

• determining and understanding commonly made mistakes in optimization modeling; 
• developing a visual, web-based environment that teaches students to formulate valid and 

tractable optimization models; and  
• evaluating the effectiveness of the developed visual, web-based environment on learning 

modeling in optimization. 
This preliminary proposal is intended to share work completed on the first two objectives and 

to generate discussions to help us better conceptualize the next stages of our project. 
Literature Review 

A modeling approach to teaching in engineering or mathematics puts the focus in problem 
solving on creating a system of relationships that is generalizable and reusable (Doerr & English, 
2003). Contemporary approaches to solving mathematical story problems have emphasized the 
need for a proper conceptual understanding of the problem. However, the factors that inhibit 
such conceptual understanding are quite complex. Lucangelli, Tressoldi, and Cendron (1998) 
suggest that problem solving with modeling problems is more difficult than solving algorithms 
because it requires (a) comprehension of the text, (b) ability to visualize the data provided, (c) 
capacity to recognize the underlying structure, (d) ability to correctly sequence solution 
activities, and (e) ability to evaluate the procedures used. These skills are especially important 
when solving college-level word problems in engineering where the problem complexity is often 
increased, contributing to learners’ difficulties with problem solving (Jonassen, 2000). 

The ability to translate from one representation of a mathematical problem to another is 
critical to the problem solving process (Janvier, 1987). However, it has been shown that even 
after several years of schooling in algebra or calculus, students often cannot engage successfully 



in this translation (Clement, Lochhead, & Monk, 1981; Clement, 1982; Janvier, 1987; Arcavi, 
1994). Learners need a way of “developing a cognitive representation of information in the 
story” (Jonassen, 2000, p. 79). That is, in order to be successful, problem solvers must have an 
accurate mental representation of the pattern of information indicated by the story problem 
(Hayes & Simon, 1976; Riley & Greeno, 1988; Jonassen, 2000). 

Researchers have discussed the role of visual diagrams as a conceptual tool that promote 
students’ construction of flexible and applicable concept images that allow for flexible problem 
solving and connection making (e.g. Dreyfus, 1994; Koedinger, 1994; Larkin & Simon, 1987). 
According to Dreyfus (1994), computer-designed diagrams can be thought of as cognitive tools 
that make it possible to represent mathematics with an amount of visual structure that we cannot 
readily achieve with any other medium. Koedinger (1994) has identified emergent properties of 
diagrams that that make them superior to a linear representation of information for many learning 
and reasoning activities. For example, they provide the potential for students to recognize 
relationships that may have otherwise gone unnoticed in a verbal or symbolic representation. 
This supports earlier findings from Larkin and Simon (1987) who identified a diagrams’ 
superiority to verbal problem descriptions due to their usefulness for grouping together all useful 
information and for supporting a large number of perceptual inferences. Koedinger (1994) 
suggests that students are more practiced in relying on perceptual inferences than the 
corresponding symbolic inferences, making the former often seem easier for the learner. 

Methodology and Preliminary Findings 
One end-goal for our study is to develop a visualization tool that can aid in modeling. Before 

fully developing this tool, we first need to better understand students’ experiences and practices 
when solving optimization modeling problems (specifically linear programming problems) and 
to identify common errors that a visualization tool could help correct. The following sections 
outline our procedures and findings for the first three phases of our work.  
Taxonomy of Optimization Modeling Word Problems 

As a first step, we looked at five optimization textbooks (Hillier and Lieberman 1995, 2001; 
Rardin, 1997; Srinivasan, 2007, Winston, 1994) to determine their categorizations of different 
linear programming models. After comparing these categorizations, we developed a preliminary, 
unified taxonomy of word problems, based on the types of constraints a problem requires (i.e., 
the constraint patterns). Then, we tested the validity of this taxonomy by solving approximately 
35 word problems from the different textbooks and examining how each problem fit into our 
taxonomy. Throughout this process, we discovered that some constraint patterns needed to be 
more specific, and so we revised our taxonomy accordingly. 

Our current version of the constraint pattern taxonomy consists of five categories: (a) 
composition constraints (indicated by terms such as “meets”, “has only”, and “more than”); (b) 
balance constraints (e.g. “Each A requires x number of…”); (c) ratio constraints (often includes 
a mixture of A and B); (d) pattern-covering constraints (“x people work this type of shift”); and 
(e) time-based constraints (e.g. investment problems). By identifying and categorizing the 
different types of constraints, we propose that we may be able to develop a more generalizable 
method for formulating mathematical models across all problem types. 
Taxonomy of Common Student Errors 

To identify students’ common errors and difficulties with modeling problems, we analyzed 
three sets of quizzes (one question each) from two sections of an optimization course and three 
sets of similar word problems, given to students on their final exams in three different semesters. 
We first studied each response and recorded the specific errors each response contained, keeping 



track of similar errors between students. We then categorized these errors broadly, depending on 
where they appeared in the model: the decision variables, the objective function, or the 
constraints. During this process, we also kept track of summary statistics for each type of error. 

The analysis of students’ responses showed mistakes on 84% of the 374 total responses 
analyzed. We identified five categories for the taxonomy of mistakes: (a) mathematical notation 
errors indicate errors associated with, for example, missing or having too many summation 
signs, or reversing indices; (b) comparison errors indicate mistakes in the direction of the 
inequality sign; (c) flow errors usually occur when multiple statements relate to one constraint 
but students forget to take that into consideration; (d) missing information errors suggest a 
student ignored the type of constraint construction, such as a profit function equation where you 
need the revenue and cost equations; and (e) decision variable errors included missing decision 
variables from the objective function or constraints, replacing a decision variable with some 
other variable, or using incorrect parameters. We found that the majority of mistakes fit into 
either the mathematical notation error (25.40%) or decision variable error (20.32%) categories. 
Comparison errors were found least (4.55%). Our current data on student errors comes from 
students’ work on only one type of constraint pattern – composition constraints. As our work 
continues, we will collect and analyze data related to other types of constraint patterns. 
Development of a Visualization Tool 

Based on these taxonomies, we designed a preliminary visualization scheme that could help 
students gain a better conceptual understanding of optimization modeling problems and that 
could diminish the types of mistakes typically made on these problems. We have considered 
several visualization types, including node-link diagrams, tables, and timeline diagrams, by 
solving different word problems using these visualizations. After reviewing a number of 
different types of problems and student work, we found that node-link diagrams provided a 
possible basis for a robust visualization scheme to represent the conceptual ideas in a wide range 
of word problems. We are currently developing a prototype of an interactive visualization web 
tool (shown in Figure 1) based on our investigation of students work on a composition constraint 
pattern problem. The tool is intended to guide the students by letting them interact with the 
question (given in written form at the top) by allowing them to form node-link diagrams that 
represent their conceptual understanding of the problem. This is to help students understand the 
flow of the problem and identify the constraints available in the question. 

At this point, our data collection has only included quantitative data from textbooks and 
student work samples. This data has provided us with an informative view of students’ 
experiences in modeling in linear programming, but it is incomplete. In the next stages of our 
project, we will conduct qualitative interviews to further understand difficulties in modeling, 
begin to test our prototype of the visualization tool with students, and expand the tool to include 
additional feedback capabilities and to handle several different constraint pattern problems.  

Questions for Consideration 
Our team would be interested in discussing the following questions during the conference:  
1. What approaches should we use to investigate the underlying causes of the mistakes that 

many students make in order to inform the design of our visualization tool? 
2. How can we most effectively study the usefulness of the tool with students?  
3. How can we ensure that the skills that the students learn through our tool (if any) are 

generalizable beyond the types of problems for which the tool is designed? 
4. What are best practices for incorporating an interactive learning tool into a traditional 

lecture-driven course? What would make such a tool appealing to other instructors? 



 
 

Figure 1. Screenshot of the visualization tool prototype 
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