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This study seeks to contribute to research on the teaching and learning of combinatorics at the 

undergraduate level. In particular, the authors draw upon a distinction characterized in 

combinatorial texts between set-oriented and process-oriented definitions of basic counting 

principles. The aim of the study is to situate the dichotomy of set-oriented versus process-oriented 

thinking within the domain-specific combinatorial problem-solving activity of students. The authors 

interviewed post-secondary students as they solved counting problems and examined alternative 

solutions. Data was analyzed using grounded theory, and a number of preliminary themes were 

developed. The primary theme reported in this study is that students showed a strong tendency to 

utilize set-oriented thinking during the problem-solving phase that Carlson & Bloom (2005) refer to 

as checking, especially when they engaged in the evaluation of alternative solutions.  
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Introduction and Motivation. In spite of the seemingly elementary nature of “counting,” 

students tend to experience a great deal of difficulty as they encounter increasingly complex 

counting problems. These difficulties are well-documented in the mathematics education research 

literature (Batanero, Navarro-Pelayo, & Godino, 1997; English, 2005; Kavousian, 2006). Also well-

established is the relevance of combinatorics in the K-12 and undergraduate curricula (Batanero, 

Navarro-Pelayo, et al., 1997; English, 1991; NCTM, 2000), particularly because of its applications 

in probability and computer science. English (1993) emphasizes the value in studying combinatorics 

education, noting that “the domain of combinatorics is a particularly fertile field for research in 

mathematics education” (p. 451). Attempts have been made to improve the implementation of 

combinatorial topics in the classroom (Kenney & Hirsch, 1991; NCTM, 2000), but in spite of such 

efforts, students overwhelmingly struggle with understanding the concepts that underpin this 

growing field. Batanero, Godino and Navarro-Pelayo (1997, p. 182) make the following claim: 

…[C]ombinatorics is a field that most pupils find very difficult. Two fundamental steps for 

making the learning of this subject easier are understanding the nature of pupils’ mistakes when 

solving combinatorial problems and identifying the variables that might influence this difficulty.  

This call by Batanero, Godino et al. acknowledges the difficulties described above, and it also 

highlights a need for a deeper look at students’ ways of thinking that will help researchers 

comprehend the nature of their mistakes.  

This preliminary report stems from the first author’s doctoral dissertation work, which examines 

two particular ways of combinatorial thinking. The aim of the study is to situate the dichotomy of 

set-oriented versus process-oriented thinking within students’ domain-specific combinatorial 

problem-solving activity. Combinatorics textbooks (e.g., Brualdi, 2004; Tucker, 2002) tend to 

formulate two foundational counting principles – the addition and multiplication principles – in one 

of two different ways: either they employ set-theoretic language or they describe them using 

process-oriented language. For example, as found in Tucker (p. 170, emphasis in original) the exact 

statements of each principle are: 

The addition principle: If there are r1 different objects in the first set, r2 different objects in the 

second set, …, and rm different objects in the mth set, and if the different sets are disjoint, then 

the number of ways to select an object from one of the m sets is mrrr  ...21 . 

The multiplication principle: Suppose a procedure can be broken into m successive (ordered) 

stages, with r1 different outcomes in the first stage, r2 different outcomes in the second stage, 



…, and rm  different outcomes in the mth stage.  If the number of outcomes at each stage is 

independent of the choices in the previous stages and if the composite outcomes are all distinct, 

then the total procedure has mrrr  ...21  
different composite outcomes.   

In Tucker’s definition of the addition principle, his language involves sets explicitly. The definition 

reflects a fundamental conception of counting as the enumeration of the number of objects in a set. 

In his definition of the multiplication principle, however, counting is framed as the completion of a 

task consisting of successive stages. Other authors reflect this distinction as well; some (e.g., 

Brualdi, 2004; Rosen, 2007) include two different definitions of each principle, one in terms of sets, 

and the other in terms of processes.  

This dichotomy in the way mathematicians present these basic principles suggests that a 

relevant distinction could be manifested in student approaches to counting problems. The literature 

does not address this issue – only a handful of studies in combinatorics education (English, 1991; 

Hadar & Hadass, 1981) refer to the distinction between sets and processes at all, but no study has 

explicitly addressed this phenomenon and its potential bearing on students’ counting. Noticing this 

distinction between sets and processes has led the authors to study whether these two formulations 

indicate any differences in the ways students think about and approach counting problems.  

Design and methodology. In designing the study, based on her experiences, the first author 

suspected that students may draw more heavily on set-oriented thinking when asked to justify 

whether an answer is right or wrong. Therefore, in an attempt to narrow the scope, she purposefully 

put students in situations in which they had to evaluate alternative solutions (thus engaging in error 

detection and correction). Furthermore, for efficiency, she focused on counting problems that are 

commonly susceptible to errors – problems that have incorrect solutions that frequently seem 

correct to students. Problems were drawn from Martin (2001) and Tucker (2002).  

In the study reported here, eight students were interviewed individually in two 60-90 minute, 

videotaped sessions. The students were drawn from an upper-division mathematics courses at a 

large urban university and included mathematics majors, computer science majors, and post-

baccalaureate students. In order to accomplish the goals above, the general interview protocol was 

as follows. In Interview 1, the subjects were given five to seven counting problems and were 

instructed to solve them as they naturally would (some talked with the author during this time, 

others were silent). Then, they were asked to explain their thought process and were posed 

questions about their work. At no point in either interview were they told whether or not a given 

answer was correct. In Interview 2, students were given alternative answers to the same problems 

they had solved in Interview 1. They were asked to evaluate the new answers, explore how the new 

answer compared to their original answer, and determine which answer they thought was correct.  

The videotape of each interview was viewed repeatedly and transcribed. The methodological 

framework of grounded theory (Strauss & Corbin, 1998; Auerbach & Silverstein, 2003) was 

implemented in order to code the data. Coding consisted of the initial identification of repeated 

ideas (Auerbach & Silverstein, Ibid) and phenomena, which were then consolidated into themes 

related to the set/process distinction. The authors also drew upon Carlson & Bloom’s (2005) 

problem solving cycle (which consists of four major stages: orienting, planning, executing, and 

checking) for analysis purposes. Coding thus took place along two dimensions: based on 

phenomena that the authors observed and categorized, and according to the problem-solving stages 

put forth by Carlson & Bloom.  

Results. Preliminary analysis of the data indicates promising themes about the occurrences of 

set- and process-oriented thinking as students solve counting problems. In some contexts, there does 

indeed seem to be some correlation between the types of counting activity students carry out as they 

draw upon certain kinds of thinking. The primary theme reported in this study is that students show 



a strong tendency toward set-oriented thinking during the checking problem-solving phase, 

particularly when they engage in the evaluation of alternative solutions. Specifically, there is 

evidence of students categorizing an answer as incorrect by identifying a particular object that was 

counted more than once. Additionally, there are cases in which students identified two different 

answers as the same when they evaluated the process – it was not until they adopted a set-oriented 

perspective that they could explain the different numerical results.  

While not all of these findings may be explored in this proposal, an example of student work on 

one problem is discussed below. The Test Questions problem states A student must answer five out 

of ten questions on a test, including at least two of the first five questions. How many subsets of five 

questions can be answered? One solution to this problem utilizes a case breakdown, based on 

whether exactly two, three, four, or five of the first five questions are answered, yielding 
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obtained by first choosing two of the first five questions to answer, and then choosing any three of 

the eight remaining questions to answer. The rationale behind such a solution is that the “at least 

two” constraint is satisfied in the first step, and thus any remaining choice of three problems will 

still satisfy the constraint of the problem. The trouble with this strategy, however, is that some of 

the possible outcomes can be counted more than once. For example, in utilizing this strategy, 

suppose problems 1 and 2 are chosen as the first step. Then, in the next step, problems 3, 7 and 8 are 

chosen as the second step. Thus, the subset of five questions to be answered is {1, 2, 3, 7, 8}. 

However, this subset could be found in a different way using the same counting strategy, namely, 

by first choosing problems 1 and 3, and then choosing problems 2, 7, 8. Thus, the expression 



















3

8

2

5
 actually counts some solutions more than once and is therefore incorrect. If the students 

solved this problem correctly initially, they were given the common incorrect answer in Interview 2. 

If they first arrived at an incorrect answer, they were asked to examine the correct solution.  

Don was a student who displayed both set and process-oriented thinking at various times. In the 

excerpt below, while working on the Test Questions problem Don decides that the incorrect 

expression is too big. In justifying this belief, he appeals to two sets of questions generated by the 

incorrect attempt that are in fact the same. That is, in order to show that 
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identifies a particular set of questions (a1, a2, a3, a9, a10) that is counted more than once. 

Don: And so let’s see I have, we’ll call them a1 and a2 [he writes down the numbers as he’s 

talking], and then I also have a3, a9, and a10. But then, add up all these combinations again, you 

know next time I might have a1, and a3, and then a2 and a9 and a10, and, so this is the same, 

and this [the incorrect attempt] um, perhaps doesn’t account for that. 

 

Don’s response reflects that, on some level, he was able to view the counting process as the 

enumeration of objects – he is counting objects in a set, and he identified one object that was 

counted too many times. Set-oriented thinking was his chosen way of justifying to himself that the 

incorrect attempt was too big.  

Conclusion. The study described here suggests that students draw upon set-oriented thinking 

during particular moments in their combinatorial problem solving. These findings stand to inform 

current understandings of student thinking about counting, offering a meaningful contribution to the 

field of mathematics education. Subsequent research will include an additional round of data 

collection based on the preliminary themes identified in this study. The authors will continue to 



examine the data and make connections among themes that emerge in the new data set, coordinating 

new and existing themes appropriately. The first author also hopes to conduct further studies that 

address similar issues, perhaps investigating ways in which combinatorial mathematicians view the 

domain specific set versus process dichotomy. 

 

Questions: 

1) Is the distinction between sets and processes, as it relates to combinatorics, a relationship 

that teachers of combinatorics have noticed? 

2) In what ways can the process-oriented thinking, as specified here, be related to other themes 

in mathematics education (such as students’ notions of functions)? 

3) For what other areas of combinatorics and discrete mathematics might this distinction be 

relevant, and in what ways?  

4) What would a domain-specific problem-solving framework for combinatorics look like? 
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