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A growing body of research suggests cognitive difficulties associated with the use of 
concrete learning materials. I argue that this research program may benefit from a 
critical examination of its underlying assumptions. Thus, this report was motivated by a 
concern that extant approach to evaluating the pedagogical effectiveness of 
“concreteness” in education is by-and-large undertheorized, resulting suboptimal 
interpretation of reform-based philosophy and recommendations, ultimately to the 
detriment of students. I hope to open up a space for a discussion of a more nuanced 
conceptualization of both (1) “concreteness” as a concept and (2) the observed cognitive 
difficulties evident in classroom implementation of concrete materials. 
 
Keywords: cognitive research, theoretical perspectives, concrete problems 
 
Introduction 

Researchers and educators are likely to agree that concrete materials help student 
reason and solve problems (Burns, 1996); however, a consensus is growing that certain 
criteria must be met in order for concrete materials and problems to be effective (for one 
recent overview, see Brown, McNeil, & Glenberg, 2009). Furthermore, there is a sense 
that certain implicit (or background) assumptions should be made available to public 
scrutiny. This report was written in hopes of helping to lay bare the background 
assumptions implicit to the aforementioned research program. 

Before I start, however, it is worth emphasizing that I do not intend to critique the 
research on concreteness itself; if anything, I am grateful for this work and hope my 
contribution may be of use to the overall research program. 

 
The Issue of Definition: What is Concrete? 

What is “concrete,” anyway; and what is “abstract”? Perhaps unsurprisingly, this 
simplistic dichotomy is highly prevalent, and thus a useful starting place for our 
investigation. In the literature, “concrete” frequently refers to actual stuff in the “real 
world,” (another concept which deserves the quotation mark treatment, see Lave, 1992) 
and “abstract” is typically synonymous with symbolic. This definition appears troubled 
beyond the first glance: one need only consider the actual experience of mathematicians. 
I posit that, to a professional mathematician, the Klein four group found in abstract 
algebra is no more abstract—or rather, no less concrete—than the number of pens on her 
desk (for an longer discusson on this topic, see Wilensky, 1991). Another approach to 
this issue is to consider whether the increasingly ubiquitous virtual worlds are concrete. 
“Concreteness,” I argue, ought not to be viewed as a property of a given object but rather 
the quality and richness of connections constructed by an individual to said object.  



This is not a purely academic argument. Labeling an object as concrete tends to 
come with certain baggage, some of it dangerous to the learner. That is, when an object is 
perceived as concrete, there is a temptation to assume that, because we can actually point 
to it, its meaning is shared among the interlocutors. Yet this need not be the case. Indeed, 
research has identified confusion arising from concrete objects as diverse and seemingly 
harmless as chalkboard drawings of cookies, marbles, and even fingers (Abrahamson, 
2009; Saxe, 2004; Saxe & Esmonde, 2005)! Labeling an object as concrete, then, does 
not exempt it from ambiguity—yet may lead such ambiguity to remain hidden. 

 
Questions related to the issue of definition: 

When solving a mathematical problem, so you experience a sense of “ah, this 
problem is concrete” or “hm, this problem is abstract”? Is your experience in line with 
traditional interpretations of these words? 

Wilensky argues that abstract mathematics is concrete to mathematicians versed 
in the area. Do you agree? 

What, if anything, is the pedagogical value of deciding a problem is concrete 
before giving it to a student? 

Are Cartesian graphs concrete? (Or, are virtual worlds concrete?) Why or why 
not? What kind of implicit confusion might arise if a teacher considers graphs concrete 
yet the students do not? 
 
The Issue of Conflation: Not All Mistakes are Created Equal 

It is not uncommon to see the following argument against concrete materials in 
contemporary research literature made either implicitly or explicitly (see, e.g., Kaminski, 
Sloutsky, & Heckler, 2009, for one explicit version of this argument): 

(1) Concrete problems convey extraneous information.  
(2) This information distracts the student from perceiving the underlying 
mathematical structure, reducing the chance of solving the problem. 
(3) Thus, concrete problems interfere with learning. 

Part (1) is largely noncontroversial; part (2) is arguable, with qualifications (compare 
Kaminski, Sloutsky, & Heckler, 2008; Koedinger, Alibali, & Nathan, 2008). The point of 
contention lies in the assumption implicit to (3) that, in order for students to learn, 
mathematical problems must be absent of competing interpretations and, ideally, allow 
for a clean interpretation. The concern here is that it may be important to distinguish 
between various types of extraneous information and the various types of mistakes such 
extraneous information induces. While some extraneous information may be of no 
pedagogical use, such as, say, the redness of counted apples, it does not follow that all 
extraneous information is pedagogically malignant. To that end, I present a recent study 
suggesting learning need not be hampered by competing interpretations arising from 
extraneous information. 

In a recent study (for details, see Trninic & Abrahamson, 2010), fifty-one 
undergraduate students solved one of two phenomenologically disparate yet 
mathematically isomorphic problem situations. 

For a familiar, concrete instantiation of the problem, we gave the following:  



“You are attempting to open a door, but do not recall which key opens the lock. 
You have 5 keys and know that only one will open the lock. If you decide to try each key 
in turn, what is the chance that the fourth key you try opens the lock?“ 

The remainder of the students solved a mathematically equivalent yet generic urn 
thought experiment. 

Participants were initially categorized by mathematical capability and then 
randomly partitioned. As we predicted from our previous pilot studies, and in line with 
much work on concrete problems, the generic group performed superior in terms of 
solving the problem (see Table 1). 
 
Table 1.  
Students’ Responses on the  
Urn and the Key Problems 

Answer  
Problem 1/5 1/2 
  Urn 22 1 
  Key 17 6 
 

In follow-up clinical interviews we found that the familiar, concrete setting (i.e., 
the extraneous information) of the key problem cued some students to misinterpret the 
key problem as a conditional probability (“Given that I am on the fourth try…”). Yet, 
despite their initial difficulty with interpreting the key problem, the interviewed students 
reported gains in both confidence and ability after resolving this conflict. I would argue 
that these gains occurred not merely despite students’ initial difficulties, but rather, 
because of them. Abrahamson (2009) found similar results, concluding that powerful 
learning happens when children learn to explicitly reconcile their naïve intuitions with 
normative understanding (in his case, combinations versus permutations). In both studies, 
naïve understands were brought to bear precisely by “extraneous” information embedded 
in concrete problems. Thus the cognitive conflict elicited by extraneous information may 
provide a fertile ground for learning. The theoretical point is this: in line with the notions 
of productive failure (Kapur, 2008) and the need for pedagogically useful struggle 
(Stevenson & Stigler, 1992), students who fail to solve a particular problem because of its 
extraneous information may ultimately make greater learning gains than those who never 
experienced similar cognitive conflict. 

 
Questions related to the issue of conflation: 

Students frequently mistake permutations and combinations. What might be some 
arguments for and against problems which are likely to be misinterpreted as permutations 
or combinations? 

When, if ever, should the student be exposed to real world problems which are 
messy or ill-defined? 

Is there pedagogical value to “teaching mathematics so as to be useful” 
(Freudenthal, 1968)? 

Is it ever useful for students to struggle with issues of interpreting the problem? 
Or, is it ever not useful for students to struggle with these issues? 

 



Conclusion 
Let us briefly consider the hypothetical case of a teacher faced with the selection 

of pedagogically effective mathematics problems. Suppose we find him wondering 
whether to present an “abstract” problem (e.g., qua a symbolic equation) or perhaps 
something more “concrete” (e.g., qua a physical manipulative). What does he choose? 

While remarkable teachers can foster insights with close to nothing, so to speak, it 
stands to reason that not all problems are created equal and even exemplary teachers 
would agree that some problems benefit their instruction more than others. Indeed, 
teachers, school boards, and even national governments make decisions influenced by 
such considerations; and “math wars” are fought for less (see Schoenfeld, 2004; Tobias & 
Duffy, 2009). Yet some of these debates may prove misplaced, once their attendant 
dichotomies are deconstructed and implicated as secondary to what may be the critical 
factor: the nature of student engagement with these problems. 

It is not enough to simply say that a problem is concrete and that concrete 
problems lead to difficulties—one must evaluate the nature of student engagement with 
such a problem. 
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