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Students use a variety of resources to make sense of integration, and interpreting the definite 
integral as a sum of infinitesimal products (rooted in the concept of a Riemann sum) is 
particularly useful in many physical contexts. This study of beginning and upper-level 
undergraduate physics students examines some obstacles students encounter when trying to 
make sense of integration, as well as some discomforts and skepticism some students maintain 
even after constructing useful conceptions of the integral. In particular, many students attempt to 
explain what integration does by trying to interpret the algebraic manipulations and 
computations involved in finding antiderivatives. This tendency, perhaps arising from their past 
experience of making sense of algebraic expressions and equations, suggests a reluctance to use 
their understanding of "what a Riemann sum does" to interpret "what an integral does.” 
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Researchers have argued that the Riemann sum-based interpretation of the definite integral is 
perhaps the most valuable interpretation for making sense of integration in applied contexts, 
particularly physics (Doughty, McLoughlin, & van Kampen, 2014; Sealey, 2014). Generally, a 
“Riemann sum-based interpretation” refers to imagining the definite integral as a sum of 
products, in which one of the factors is an infinitesimal or a “very small amount.” Despite the 
utility of Riemann sum-based interpretations, many students do not develop such reasoning in 
their calculus courses, despite having studied Riemann sums (Jones, 2015b). It is likely that at 
least part of the reason for this situation is that Riemann sum-based interpretations are not 
generally emphasized in traditional calculus classrooms, where procedural methods and “area 
under the curve” ideas dominate (Jones, 2015b). I argue here, however, that there are also 
psychological factors at work that can interfere with students’ ability to adopt Riemann sum-
based reasoning, and that even among students who do adopt such reasoning, these factors 
continue to lead students to doubt its legitimacy. 

 
Background 

Earlier research has shown that what typical students do know about integration when they 
complete a course in integral calculus is often confined to the procedural knowledge necessary 
for solving certain integrals symbolically, while their conceptual understanding is limited to 
interpreting the definite integral as an “area under a curve” (Bezuidenhout & Olivier, 2000; 
Jones, 2015b).  Nevertheless, evidence suggests that area interpretations are often not the most 
useful for using the integral in applied contexts (Sealey, 2006; Jones, 2013, 2015a). Furthermore, 
although many students do not have a well-developed understanding of the definite integral as a 
sum, several researchers have argued that a Riemann sum interpretation is perhaps the most 
useful to support students in making sense of many applications of integration (Doughty, 
McLoughlin, & van Kampen, 2014; Jones 2013, 2015a; Nguyen & Rebello, 2011a, 2011b; 
Sealey, 2006, 2014; Thompson & Silverman, 2008).  This situation exists even though most 
traditional calculus textbooks and curricula in the United States include presentations of 



Riemann sums and their limits, as well as numerical methods for approximating areas based on a 
Riemann sum understanding. 

Some have suggested that there is a mismatch between what is emphasized in traditional 
calculus curricula and what is actually most useful to students in applications to disciplines 
outside of the mathematics classroom (Dray, Edwards, & Manogue, 2008; Yeatts & 
Hundhausen, 1992).  I think that this is likely to be true.  I argue in this paper, however, that 
learning to interpret the definite integral using a Riemann sum conception offers particular 
psychological challenges to students that may, in fact, be exacerbated by traditional pedagogical 
approaches.  In other words, I claim that the problem is not merely a pedagogical one, but also a 
psychological one rooted in students’ inability to reconcile a Riemann sum interpretation with 
the symbolic manipulations involved in computing the value of a definite integral using the 
Fundamental Theorem of Calculus. 

 
Interpretive framework 

Although students and experts alike commonly use an “area under a curve” interpretation of 
the definite integral, it is important to note that this is really a means of interpreting what the 
value of the integral might represent. Riemann sums, however, can be used as part of a process 
through which that value is found. Of interest to this research is how students understand the 
process of using Riemann sums, and how they understand the process of integration. That is, 
from a student’s perspective, what do these two processes do and what do they have to do with 
each other? 

 
What does a Riemann sum do? 

Under standard definitions of the embedded symbols, the definite integral can be expressed 
(or defined) as a Riemann sum: 

€ 

lim
n→∞

f (xi)Δx
i=1

n

∑  

As a mathematical, algebraic statement, the Riemann sum representation of an area as a 
combination of rectangular areas has explanatory sense built into it, in that a meaningful 
algebraic and geometric process for finding area can be mapped onto the symbols of the 
expression, and the process can be directly modeled and investigated. The area of each rectangle 
is computed by multiplying its height and width, and is represented by 

€ 

f (xi)Δx .  The 
summation indicates that all the rectangles are to be added together and combined into a total 
area.  The limiting process mathematizes the notion of letting the width of the intervals get “very 
small” (or, equivalently, letting the number of rectangles increase without bound).  Furthermore, 
the fact that the limiting process has a completion point, the limit itself, supports the notion of 
the rectangles themselves becoming “infinitesimally thin.”  In short, the Riemann sum process 
algebraically does what it says it does. There is a clear way in which algebraic and geometric 
meaning can be mapped on to the algebraic syntax. 

 
What does a definite integral do? 

The situation with regard to the definite integral, however, is quite different from the 
perspective of a student who considers a definite integral to be the means of calculating an area 
using antidifferentiation. Although the symbols used in expressing a definite integral lend 
themselves to being interpreted as the sum of the products of lengths and widths of rectangles, 



the actual process of computing the definite integral is entirely different.  Consider a simple 
example: 
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In this case, what the integral “does” is transform the integrand, 
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x3, into its antiderivative, 
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through a process that cannot be subjected to algebraic sense-making. The power rule for finding 
such an antiderivative can be readily proven, of course, but the computation takes advantage of a 
known pattern associated with antiderivatives of polynomials, and the algebraic manipulation is 
immune to any sort of geometric explanation or metaphorical algebraic interpretation, except 
perhaps in the simplest cases.  In addition, no actual “summation” of any sort takes place, nor 
does anything “get very small,” and the differential dx appears simply to be extraneous and to 
evaporate in the solution process.  (Indeed, a number of the beginning students wondered aloud 
why the differential was used at all.)  Riemann sum-based reasoning may fit the syntax of the 
original integral expression, but it cannot be used to explain or extract meaning from the 
computational process. 

The central thesis of this paper is that the algebraic solution process for finding an area as a 
limit of a Riemann sum is inherently different from the solution process for finding an area 
through the computation of an antiderivative, and that this difference can cause varying levels of 
confusion and puzzlement to students.  At the very least, nothing would suggest that importing a 
Riemann sum-based explanation into the process of integration via antidifferentiation ought to be 
automatic or natural for students, at least, not for students who are accustomed to trying to make 
sense of their mathematical activities. Nothing they do when computing a definite integral is at 
all related to Riemann sum-based ideas. I am not aware of any other circumstances in typical 
mathematics curricula prior to the study of calculus that asks students to use the semantics of one 
mathematical process to interpret the syntax of another.  The purpose of this research is to 
document how this conflict between syntax and meaning is manifested in the reasoning used by 
undergraduate physics students. 

 
Methods 

Data for this study are taken from extensive interviews between the author and individual 
undergraduate physics students.  Eight beginning students were selected from among volunteers 
in an introductory calculus-based physics course, focusing primarily on classical mechanics.  
These students, representing a variety of majors, had all completed at least one academic quarter 
each of differential and integral calculus.  Seven upper-level students were also selected from a 
third-year cohort of physics majors, each of whom had completed two quarters of multivariable 
(vector) calculus. Students were interviewed using open-ended interview methods about every 
other week during the course of an eight-week term.  All students completed at least two 
interviews, and most completed four.  The questions presented to students involved primarily 
problems and concepts of calculus, both in abstract mathematical form and in applied problem 
contexts.  The interviewer asked students to answer questions and solve problems, sometimes 
using mechanical devices, thinking aloud as best they could.  Additional questioning continued 
until the interviewer believed he understood the reasoning the students were using, but, in 
general, the interviewer refrained from evaluating the students’ ideas or offering instruction.  All 
interviews were audio- and video-recorded for later analysis.  The portions of the interviews 
transcribed for and relevant to the present research all involved students’ use and interpretation 
of definite integrals in both abstract and applied contexts. 



Searching for meaning in integration 
A thorough presentation of the data requires a careful and extended analysis of a large 

number of lengthy interview transcripts.  In the limited space allotted here, I offer only 
summaries of the central findings of this work, absent the detailed transcripts that support these 
findings.  A more comprehensive paper is in preparation. 

At the time of the interviews, none of the beginning students demonstrated an ability to use 
Riemann sum-based reasoning to interpret the definite integral.  All of these students, however, 
had studied both Riemann sums and definite integration.  When asked about the relationship 
between the two topics, many students indicated an awareness of some relationship, but none 
could articulate it.  About half identified them as two different ways of finding the same thing, an 
area.  The other half focused on Riemann sums as a means of approximating an area, while a 
definite integral could find it exactly.  As such, integrals were preferred, and Riemann sums were 
invoked only as a last resort when an integral could not be directly computed.  When asked why 
solving a definite integral through antidifferentiation found an area, none of the beginning 
students (and only one of the upper-level students) could answer the question.   

Most of the beginning students, either spontaneously or under direct questioning, indicated 
that their knowledge of Riemann sums did not in any way inform their understanding of the 
definite integral.  Throughout the interviews, however, many students showed evidence of 
searching for meaning in the procedures used to compute definite integrals through 
antidifferentiation and the Fundamental Theorem of Calculus.  This search for meaning arose in 
at least three different aspects of the solution process. 

 
Searching for meaning in symbol manipulations 

I described above how the algebra of Riemann sums directly supports algebraic and 
geometric sense-making for finding areas.  Several students in this study showed evidence of 
looking for or expecting similar sense in the symbolic manipulations of the antidifferentiation 
process.  These students, for example, questioned why the power rule for finding the 
antiderivative of a polynomial should result in a function that gives area, or why that same rule 
used in an applied context resulted in a change of units between the original function and its 
antiderivative. They specifically noted an expectation of meaning to be found in the symbolic 
manipulations: 

I don’t know why, like, bringing up a constant in the exponent, or whatever you have to 
do to solve it … I don’t know why that means that it’s now revolutions instead of 
revolutions per minute, if I was integrating revolutions per minute. 

Even upper-level students appeared to expect to find sense in the symbolic manipulations.  One 
upper-level student, also discussing the power rule, suggested that there should be a geometric 
explanation for it: 

I know it’s the power rule, but I guess they never showed me why behind the power rule, 
or like, the visual, a connection between the graph-. 

The data lead me to conclude that some students are treating the symbolic manipulations of 
antidifferentiation as though they are algebraic manipulations, and should be subject to algebraic 
interpretation and sense-making.  Both physics and mathematics educators alike have 
emphasized the importance of developing conceptual understanding to underlie algebraic skills 
(Kieran, 2007; Sherin, 2001), but we have not yet directed attention to the possibility of students’ 



subsequent search for such meaning in the context of integration and antidifferentiation 
techniques where it cannot be found in the same way. 
 
Searching for meaning in substitution procedures 

Some students showed evidence of finding significance in the substitution procedures using 
the limits of integration at the end of the integral evaluation process.  The appeal to the 
substitution procedures typically arose as students were trying to explain why the units of an 
integrand changed in the process of integration; for example, why the antiderivative with respect 
to time of a function with units of revolutions per second was a function with units of 
revolutions.  A student using Riemann sum-based reasoning could appeal to a cancellation of 
units between the integrand and the differential.  Without such Riemann sum-based reasoning 
skills, these students appealed, instead, to the substitution process as the source of the change in 
units.  For these students, the antiderivative, in itself, essentially maintained the units of the 
original integrand.  They reasoned, however, that during the substitution procedure, the units of 
the limit were inserted into the antiderivative, thereby resulting in a change of units.  One student 
gave an extensive explanation for this and maintained his reasoning for the final units of 
“revolutions” under repeated questioning: “Because you’re adding in the time component.  
You’re substituting in.”  He argued that, during the substitution process (and only then), the units 
of the original integrand cancelled with the units of the limits of integration. 

 
Searching for meaning in the geometry of the antiderivative 

In their attempt to explain why a definite integral could be interpreted as an area, some 
students sought geometric structure within the algebraic form of the antiderivative.  They 
reasoned that, since finding an antiderivative is necessary for finding the area under the curve, 
there ought to be a way to uncover the area calculations within the algebraic structure of the 
antiderivative.  This is, in a sense, an attempt to construct a direct parallel to finding the 
underlying geometric structure within a Riemann sum, where heights, widths, and sums of 
rectangles are all represented in the algebra. 

One beginning student made a considerable effort to deconstruct an antiderivative 
algebraically in an attempt to match its algebraic structure to her graph of the area she knew it 
was used to find.  In the end, she exhibited some satisfaction in mapping her calculations to two 
area regions, the difference of which gave her the final answer.  She could not, of course, explain 
why the algebra produced the correct areas, and she quickly realized that she still could not 
explain why the antiderivative process should be used at all.  At that point, she returned to a 
written expression of the power rule, appeared to try to make sense of why it should yield an 
area, and soon gave up: “I don’t know.” 

Recall that none of these students ever invoked Riemann sum-based reasoning to interpret an 
antiderivative, and most gave convincing evidence that they could not do so.  In these 
circumstances, attempts to explain why integration does what it does led students to bring out the 
only other tools they had at their disposal: algebraic and geometric reasoning tools that serve 
well in other circumstances.  What was lacking was an awareness that antidifferentiation 
procedures are not subject to algebraic reasoning. 

 
Skepticism of Riemann sum reasoning 

In contrast to the beginning students, all of the upper-level students demonstrated 
competence in using Riemann sum-based reasoning to interpret definite integrals.  They all, in 



fact, used it quite well for both abstract mathematics problems and contextually rooted physics 
problems.  Nonetheless, a number of the students clearly and repeatedly expressed skepticism in 
the validity of using such reasoning. 

One student interrupted his otherwise clear Riemann sum-based explanation for an integral 
he set up with a humorous expression of embarrassment: 

 Yeah, I do it.  I don’t-, I’m not proud of it, but I hope there’s some way to justify it. 

Asked to explain his comment, the student indicated that such reasoning seemed to him to be 
“kind of a trick,” but that he could not justify it mathematically, and he did not know if it could 
be justified mathematically.  He seemed particularly troubled by interpreting a differential as an 
infinitesimal, calling such an identification “hokey.”   

Another upper-level student, equally skilled at demonstrating Riemann sum-based reasoning 
when asked to do so, went out of his way to avoid using such reasoning.  His explicit reason was 
that the Riemann sum explanation did not reflect what integration actually does.  He observed, 
correctly, that integration via antidifferentiation involved a function transformation, but that this 
transformation took place through an entirely mysterious process that was not subject to sense 
making: 

Like, it’s impossible to actually accurately explain what this integral is conceptually.  It’s 
impossible to do it….  It’s not possible … to talk about an infinitesimal volume and an 
infinitesimal density.  That doesn’t make sense. 

This student’s case is particularly striking because, unlike the beginning students, he understood 
that the antidifferentiation process could not be subjected to algebraic or geometric 
interpretation, but he equally rejected a Riemann sum-based explanation because he could not 
accept that one could reason sensibly about infinitesimals.  What all of these students have in 
common, however, is an inability to reconcile reasoning about Riemann sums with the actual 
computational process of calculating a definite integral through antidifferentiation. 
 

Discussion 
A number of researchers in both physics and mathematics education have observed that 

many students, even those with a strong calculus background, fail to use Riemann sum-based 
interpretations of the definite integral, despite its unique value to supporting sense-making in 
many applied contexts.  There can be little doubt that part of the reason for students’ 
unfamiliarity with such reasoning process is that they are not given much emphasis in traditional 
calculus curricula.  What I hope this research demonstrates, however, is that addressing this 
situation is more complex than it may first appear. 

I am arguing that there are psychological explanations for why students do not quickly pick 
up Riemann sum-based reasoning, and why such reasoning may seem puzzling or suspect to 
them even when they have been taught to use it.  I hope it is clear that this paper should not be 
interpreted as another exposition of “student deficits.”  To the contrary, the heart of the argument 
is that most of the students who took part in this research were actively trying to make sense of 
the mathematical activities that make up the integration process.  The problems they ran into, 
however, exist because of the peculiar marriage that must take place between the reasoning of 
Riemann sums and their limits, and the algebraic symbols and symbolic manipulations that 
represent the process of integration by means of antidifferentiation.  At face value, there is no 
obvious reason that students can find for using Riemann sums to interpret antidifferentiation 
procedures that not only appear to be, but actually are, algebraically unrelated to the complex 



limit and summation procedures they have learned for Riemann sums.  The algebra of Riemann 
sums readily supports reasoning about area computations; the procedures on which the 
Fundamental Theorem of Calculus is based do not.  We should not be surprised that students 
question the validity of using the reasoning for one to interpret the computational results of the 
other.  If they are to be successful, increased attempts to introduce students to the use of 
Riemann sum-based reasoning will need to accommodate these peculiar psychological hurdles 
that students will encounter. 
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