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This study adopts a property-based perspective to investigate the forms of abstraction, 

instantiation, and representation used by undergraduate topology students when acting to 

understand and use the concept of a continuous function as it is defined axiomatically. Based 

on a series of task-based interviews, profile cases are being developed to compare and 

contrast the distinct ways of thinking and processes of understanding observed by students 

undergoing this transition. A framework has been established to interpret the participants’ 

interactions with the underlying mathematical properties of continuous functions while they 

reconstructed their concept images to reflect a topological (axiomatic) structure. This will 

provide insight into how such properties can be successfully incorporated into students’ 

concept images and accessed; and which obstacles prevent this. Preliminary results reveal 

several coherent categories of participants’ progression of understanding. This report will 

outline these profiles and seek critical feedback on the direction of the described research. 
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Since Hilbert’s program at the turn of the last century, modern mathematics has rested on 

the notion of an axiomatic system (Zach, 2015). These consist of collections of declarative 

statements, or axioms, whose interactions describe the properties and relationships of the 

primitive elements in the system. Other properties can be logically deduced from the axioms, 

without the need for intuition. Reasoning in this manner is considered the ideal goal for 

students of advanced mathematics, although it may not be natural for many at first 

(Freudenthal, 1991; Tall, 2013). 

This research seeks to illuminate the transition that learners face when attempting to alter 

and embed their informal and more formal ways of understanding within axiomatic 

structures. By exploring the participants’ transformative use of abstraction in the 

reconstruction of their concept images for continuous functions in axiomatic contexts, this 

study contributes to an emerging perspective on the construction of axiomatic mathematical 

understanding in general. The dual processes involved in the abstraction and instantiation of 

such properties should play an essential role in the development of axiomatic knowledge 

structures. 

Background 

Axiomatic mathematical understanding 

Advanced mathematical thinking has been shown to be different from its earlier forms 

(Harel, 2000; Harel & Sowder, 2005; Sfard, 1994; Sierpinska, 1990; Tall, 2013). Students of 

advanced mathematics must revise their concept images for earlier ideas in ways that no 

longer rely on embodied metaphors and intuition about objects in the physical world (Sfard, 

1994). Instead, mathematical properties gain importance as they are transformed from 

descriptions into definitions (Freudenthal, 1991; Tall, 2013). Eventually, the need for 

axiomatic understanding demands a complete reversal of the relationship between properties 

and mathematical objects (Freudenthal, 1991; Garcia & Piaget, 1983/1989).  

The transition to axiomatic processes of understanding is fundamentally different than 

earlier transitions faced by mathematics students. It requires a substantial shift in the 

students’ thinking—from descriptive activities concerning the properties of mathematical 



objects, to the construction of axiomatic systems and definitions based a priori on collections 

of those properties. As students are led toward increasingly abstract forms of thought that are 

less grounded in everyday experience, this can result in profound difficulties and 

misconceptions as they build their formal understanding of advanced mathematical topics 

(Freudenthal, 1991; Harel & Tall, 1991; Tall, 2013). Learners’ abstractions, instantiations and 

representations of mathematical properties are therefore a vital research focus for the 

exploration of their transitions to axiomatic understanding. This is the primary unit of 

analysis in the study described here. 

 

Cognitive structures in advanced mathematical thinking 

Tall and Vinner (1981) use the term concept image to describe “the total cognitive 

structure that is associated with the concept, which includes all the mental pictures and 

associated properties and processes” (p. 152). In this definition, the “structure” of the concept 

image was left largely without description; used as a holistic notion to refer to its totality, 

rather than as an explicit description of its organization. However, several elements of that 

structure have since been outlined in detail, such as: 

1. Basis for categorization—Whether students categorize pre-requisite concepts through 

exemplar representations, prototypical abstractions, or metaphorical comparisons is a 

significant factor in their ability to generalize continuous functions to broader contexts 

(Alcock & Simpson, 2011; Lakoff, 1987). 

2. Defining activities—The properties that have been abstracted into a student’s personal 

concept definition may not coincide with the formal definition, or even the examples they 

consider relevant to the concept. Analyzing participants’ defining activities according to 

the DMA framework (Zandieh & Rasmussen, 2010; Dawkins, 2012) creates a context for 

the interpretation of the relationship between concept image and concept definition. 

3. Example space structure—Several factors involved in the structure of a student’s example 

space have been examined by researchers in recent years including: density, 

connectedness, and axiological nature (Sinclair, Watson, Zazkis and Mason, 2011); and 

its dimensions of variation and range of permissible change (Watson & Mason, 2005). 

The example space will be a key structural component in this analysis of the concept 

image. 

4. Use of metaphor and embodiment—Many students will continue to use embodied 

metaphors and their physical intuition to guide their understanding, rather than axioms 

and definitions. Whether this is intrinsic to mathematical thought (Lakoff & Nunez, 2000) 

or an obstacle that may be overcome (Sfard, 1994), it remains a factor in any complete 

study of transitions in understanding. 

5. Abstraction types—Hershkowitz, et al. (2001) defined abstraction as “an activity of 

vertically reorganizing previously constructed mathematics into a new mathematical 

structure” (p. 202). As participants reconstructed and reorganized their understanding of 

continuous functions, certain activities related to abstraction were observed and can now 

be analyzed. Piaget’s four types of abstraction will play an important role here (as cited in 

von Glasersfeld, 1995), as well as Hamton’s (2005) explanation of the importance of 

context in abstraction and instantiation. 

While these constructs have been considered in isolation, there has been less work in 

seeking relationships between these separate elements of the concept image structure. The 

main contribution of the described research will be to explore a number of distinct cases of 

interaction between these five elements, forging the way toward a more complete 

understanding of how the concept image is structured and re-structured as the participants’ 

transition to axiomatic formalism proceeds. 



Significance 

This study contributes to the theoretical knowledge about advanced mathematical 

understanding by: 1) providing insight into students’ transitions to axiomatic content, 

especially in the important context of continuous functions; and 2) exploring the effect of 

shifting the focus of mathematical learning research onto learners’ mental representations of 

mathematical properties rather than mental or mathematical objects. 

The continuous function concept is of great importance, not only as a window into the 

transition of students’ understanding toward axiomatic settings, but also in its own right. The 

long historical formulation of this idea led to the development of the important field of 

topology (Moore, 1995), and is central to the exploration of topological invariants through its 

role in the definition of homeomorphism, the defining criteria for the preservation of 

topological properties (Munkres, 1975/2000). 

By studying the transition to an axiomatic system in the context of continuous functions, 

this research spotlights the participants’ abstraction activities relating to important 

mathematical properties. Not only is continuity itself a property of the reified notion of a 

function (Dubinsky,1991; Sfard, 1994), but it is a complex of relationships between sub-

properties, such as sets that are open or closed, sequences that converge, and 

images/preimages of a given function. These interactions generate the property of continuity 

at higher levels of abstraction, and are therefore worthy of investigation. The advanced study 

of properties and their relationships will be needed to effectively model students’ transitions 

to axiomatic formalism in undergraduate and graduate mathematics classrooms.  

There are a number of research perspectives about how students acquire mathematical 

understanding (Arnon, et al., 2014; Sfard, 1994; Tall, 2013) through the cognitive 

representations of actions, objects, or symbols. Alternatively, Slavit (1997) demonstrated a 

“property-oriented view” (p. 263) of students’ understanding of functions, blending with 

Sfard’s (1994) operational-structural perspective to “discuss how a student can reify the 

notion of function as a mathematical object that possesses or does not possess various 

functional properties” (Slavit, 1997, p. 263). This investigation aims to elaborate this 

perspective greatly, establishing a scheme to describe the structure of participants’ concept 

images for continuous functions in terms of mathematical properties and students’ mental 

actions upon them. The cases constituted in this study will enable future research on targeted 

instructional techniques to accommodate diverse profiles of student learning in axiomatic 

contexts. 

 

Methods 

This qualitative, case-oriented research was first informed by several cycles of grounded 

theory-building that occurred over three semesters at a large university in the southwest 

United States. The initial studies aided in the development of a categorization scheme for 

possible factors and obstacles involved in the development of an axiomatic understanding of 

continuous functions. These categories served as the basis for the constitution of archetypal 

cases, which came to be organized around learners’ uses of abstraction and instantiation of 

mathematical properties in axiomatic contexts. 

 

Research design 

Grounded theory framework for preliminary data generation  

The evolution of the theoretical background for this study relied on several iterations of 

applied grounded theory methodology, which provided enough initial data to extract 



meaningful dimensions for further study. Three semesters of preliminary interviews served as 

the ultimate basis for discovering categories in the emerging theoretical model, although 

those categories were also informed by a pre-existing theoretical framework derived from the 

research literature. This research guided the formation of interview tasks and questions, 

designed to elicit specific, observable acts of understanding. These tasks and questions were 

then modified based on participants’ responses and the researcher’s own reflective insights. 

Categories were formulated through this iterative process, which were then modified via 

reflexive feedback and sharpened into relevant dimensions for study. 

 

Case analyses 

The next phase of research used these theoretical categories to develop cases of particular 

ways of thinking and processes of understanding students use in combination to develop 

axiomatic understanding. Although it is not claimed that these cases are generalizable, they 

contribute to an understanding of the interaction among various types of abstraction and 

instantiation students might use at this stage in their mathematical development. This will be 

an essential first step to conducting further research in this area.  

The choice of case-oriented research for this purpose was justified by the complexity of 

the phenomena being investigated. Whereas a variable-oriented approach presupposes a 

homogeneous population from which to select a randomized sample, case studies seek to 

draw out differences in the population and to explore complex relationships between 

conditions and outcomes. Through in-depth investigations of cases, Ragin (2004) explains 

that qualitative researchers can often account for “causal heterogeneity” and “conjunctural 

causation” (p. 135); providing models for phenomena with multiple factors that the analytic 

tools of variable-oriented researchers cannot manage. 

 

Participants and Selection Criteria 

 Five participants from an undergraduate topology class of approximately 30 students 

were selected for profiling. They were chosen for their theorizing capacity based on their 

answers to a prerequisite knowledge assessment and brief interviews. Criteria for selection 

were divided into four categories relating to their understanding of the prerequisite concepts: 

1) categorization schemes and types of abstract representations, 2) personal concept 

definitions and their alignment with the formal definition, 3) example space structure and 

coherence, and 4) use of metaphor, visualization and multiple representations. 

 

Procedures 

 This investigation is a multiple-case analysis consisting of five distinct cases of 

participants’ cognitive transformations as they reconstructed their concept images for 

continuous functions to reflect an axiomatic structure. The cases were chosen based on 

classroom observations, a preliminary assessment, and a brief interview with each individual 

in the sample pool. The theoretical criteria for the constitution of these cases came from the 

research literature and insights that have emerged from preliminary study data as described 

above, as well as a textbook and curricular analysis. 

 

Textbook analysis 

Twelve topology-related textbooks, used widely in introductory topology courses across 

the U.S., were analyzed in the preliminary data collection process. In particular, one textbook 

(Croom, 1989) was chosen by the participating professor as the course textbook for the 

semester of the study. The goal was to discern the intended learning that authors expect 

students to follow while transitioning to an axiomatic understanding of continuity. These 



sequences represent classical categorization schemes for the central notion of continuous 

functions and several pre-requisite and co-requisite concepts such as: functions, open and 

closed sets, sequences, and limits. Such schemes are the goal state for the structure of 

students’ concept images and not representative of the natural categorization schemes that 

most students will adopt at first. 

The approaches that were studied varied widely with respect to these topics, affected in 

some cases by the need to construct the concepts from prior knowledge, and in others by the 

authors’ willingness to present an abstract definition without explicit motivation. Codes for 

each of the analysis categories reached saturation, with themes becoming redundant among 

the twelve textbooks. Nevertheless, these codes represent a large variety of potential 

didactical approaches to the wider subject of continuous functions. Different blends of the 

above approaches might be chosen by the professor, with more or less emphasis on examples, 

prototypical abstractions, categorization rules, or metaphors. Variations in the presentation of 

the content may influence students’ approaches to understanding the topics, presenting 

possible future avenues for research. 

 

Task-based interviews and artifact analysis 

Since a learner’s enactment of understanding is fluid and context dependent (Duffin & 

Simpson, 2000; Sierpinska, 1994) qualitative, task-based interviews were deemed the most 

appropriate manner of eliciting appropriate actions and capturing the evolving state of her or 

his cognitive structure. However, there are challenges involved in eliciting a full, reasoned 

solution or proof in a time-limited setting. Participants may demonstrate some of their 

reasoning processes in this way, but they cannot necessarily demonstrate their ability to 

formally produce a proof, or work through complex threads of logical reasoning. For this 

reason, classwork (e.g. quizzes, exams) and homework was also analyzed in order to gain 

insight into the participants’ full range of mathematizing abilities. 

Analysis was centered on participants’ in-class work and the results of three rounds of 

task-based interviews held throughout the semester. These hour-and-a-half long interviews 

were focused on these three broad topics: 1) the description and use of open/closed sets, 

sequences, and real-valued continuous functions; 2) the description of continuous functions in 

abstract contexts; and 3) the use of continuous functions in abstract contexts. The interview 

questions were designed to elicit the participants’ personal concept definitions and elements 

of their concept images for these topics, such as salient metaphors, the example space 

structure and the basis for their categorization schemes. Students were then tasked with 

reconciling their definitions to divergent elements of their concept images and/or the formal 

definitions for these topics. Further tasks were designed to provoke acts of abstraction from 

the participants as they tried to enact their understanding in proof and problem-solving 

contexts. 

 

Questions for Audience 

 

1. Might it be possible to find different cases of student thinking in different classroom 

contexts (e.g. metric space courses, geometrically-oriented introductions, or more 

abstractly presented material)? 

2. To what extent are a student’s uses of abstraction and instantiation related to each 

other? In other words, could we hope to predict how a student uses a mathematical 

concept by the process they used to define it? 



3. In what other ways might the transition to axiomatic formalism reflect or contrast 

with earlier transitions? 
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