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Abstract 
Learning progressions for the development of the ability to look for and make use of 

mathematical structure would benefit from understanding how students in mathematics-focused 
majors might construct such structures in the form of general statements. The author recruited ten 
university students to interviews focused on tasks that asked for the reconstruction of a general 
statement to accommodate a broader domain. Through comparative analysis of responses, four 
major categories of approaches to such tasks were identified. This preliminary report describes in 
brief those four categories. 
Keywords: Undergraduate mathematics, mathematical practices, structure, generality, general 
statements. 

Rationale 
One goal of mathematics education at all levels is to promote the development of 

proficiency in mathematical thinking. In recent years, the Common Core Standards (Council of 
Chief State School Officers [CCSSO] & National Governors Association Center for Best 
Practices [NGA], 2010) have become a well-known framework for describing the mathematical 
practices that students should develop during their K-12 education.  

The Standards for Mathematical Practices are meant to “describe varieties of expertise 
that mathematics educators at all levels should seek to develop in their students” (p. 6). Included 
among these Standards is the practice to “look for and make use of structure” (p. 8). Mason, 
Stephens, and Watson (2009) define mathematical structure as “the identification of general 
properties which are instantiated in particular situations as relationships between elements” of 
some kind of collection. For the purpose of this preliminary report, a statement that describes 
such a structure will be referred to as a general statement. The construction of general statements 
is an essential component of mathematical activity, without which the knowledge of individuals 
and of the discipline cannot grow (cf. Mason, Drury, & Bills, 2007). 

According to NGA and CCSSO (2010), the Standards were constructed on “research-
based learning progressions detailing what is known today about how students’ mathematical 
knowledge, skill, and understanding develop over time” (p. 4). A learning progression for the 
ability to create general statements should include research-based descriptions of the various 
ways that individuals might construct general statements as their formal education in 
mathematics increases. Research efforts have led to insights into the ways that elementary, 
middle, and secondary students construct general statements through patterning and generalizing 
(e.g., Becker & Rivera, 2004, 2005, 2006, 2007; Ellis, 2007; English & Warren, 1995; Fuii & 
Stephens, 2001; Garcia-Cruz & Martinón, 1997; Jurow, 2004; Lannin, 2005; Lannin, Barker, & 
Townsend, 2006), yet much less is known about the approaches that students, engaged in formal 
postsecondary study of mathematics, use to construct general statements 

This preliminary report focuses on findings from data collected as part of a research study 
designed to investigate the following question:  

What are the characteristics of approaches that postsecondary students in math-focused 
majors use when constructing general statements? 

Theoretical Framework 
Examples and generality 



	

	

Watson and Mason (2005) suggest that example construction is an important aspect of 
mathematical activity. Among other possible uses, examples may serve as “placeholders used 
instead of general definitions and theorems” (p. 3) or as “representatives of classes used as raw 
materials for inductive mathematical reasoning” (p. 3). The generality that one encodes in the 
examples that are produced may have an influence on the process of developing a general claim. 
For example, as Mason and Pimm (1984) noted, the numeral 6 can be used to represent a specific 
value, or as a representative example of an even number, or even as a generic representation of 
any element of the even numbers. The claims that one makes about a specific inscription may or 
may not be general claims about a class of objects, depending on the generality that the 
inscription is meant to represent.  

In addition to the generality that one encodes in an example (or attributes to an example), 
the symbols used to represent an example can influence the process of developing a general 
claim about a collection. Lannin, Barker, & Townsend (2006) hypothesized that individuals are 
more likely to develop numerical patterns involving recursive relationships when elements of a 
collection are represented in such a way that one can perceive one figure as an intact subfigure of 
another, such as in the arrays shown in Figure 1, and that learners are more likely to work toward 
patterns that relate ordinal position and numerical values when presented with figures that are not 
so easily perceived as embedded one-within-another (see Figure 2). 

 
Figure 1. Recursively oriented patterns (Lannin et al., 2006, p. 22) 

 
Figure 2. The Border Problem (Lannin et al., 2006, p. 18) 
Relationships 

A general statement is, in its presentation, nothing more than a claim that one is making 
about elements in a collection. Behind a general statement, however, are the structures and 
relationships that one understands and that undergird the statement itself. The relationships to 
which one attends when examining examples and building relationships can influence and even 
characterize the resulting general statement. Stacey’s (1989) illustration of students’ approaches 
to linear generalizing tasks indicated that some learners identify relationships between examples 
and use those relationships to transform one example into another. For example, a student who is 
given the images shown in Figure 1 and asked to predict the number of rectangles and squares in 



	

	

each set for N=4 might identify an additive relationship and predict that the number of rectangles 
will be one more than for N=3 and that the number of squares will be four more, thereby 
transforming the total of 3 rectangles and 9 squares for N=3 into totals of 4 rectangles and 13 
squares for N=4. Alternatively, some respondents will focus on relationships between the index 
value and the number of elements, noting that, for example, the number of rectangles is 2 for 
N=2 and 3 for N=3 and hypothesizing that the number of rectangles will always equal the index 
value. In the case of patterning activities such as those used by Stacey (1989) and Lannin and 
colleagues (2006), the type of relationship that the participant finds salient can impact the 
development of either a recursive relationship or a functional relationship. 

Methods 
Ten students from a large mid-Atlantic university were recruited as participants. All were 

pursuing degrees in math-focused majors: Six were pursuing degrees in secondary mathematics 
education, and four were pursuing degrees in mathematics. Each participant was enrolled in 
mathematics coursework intended for students in their fourth year of study, and each had 
completed at least one mathematics course at that level prior to participating. Participation 
consisted of three task-based interviews, each lasting approximately one hour and consisting of 
one or more tasks designed to engage the participant in the construction of a general statement. 
Recordings were used to capture participants’ statements and to provide a video record of the 
participants’ written work and nonverbal gestural communication. Each interview was 
transcribed and each transcript was parsed into responses that began at the introduction of a task 
prompt and ended at the introduction of a subsequent task prompt or at the end of the recording.  

This preliminary report is based on participants’ responses to tasks that provided a 
general statement (we will refer to this as the anchor statement) and that asked the participant to 
reconstruct the claims made in the anchor statement as claims that would be true for a superset 
containing the original domain (we will refer to the superset as the target domain and to the 
requested set of claims as the target claim). Specifically, participants responded to one or more 
of the following task prompts: 

Reconstructing products (RP). Consider the following statement: Any four consecutive 
whole numbers is divisible by 12. Can you rewrite the statement so that it is true for products of 
three or four consecutive whole numbers? 

Reconstructing Unit Ball (RB). Every point (x ,0) on the interior of the interval [-1 , 1] 
has the property that |x| < 1. Can you rewrite the statement so that it is true for all points on the 
unit circle and its interior? 

Reconstructing Sums (RS). Consider the statement that the sum of the first n counting 
numbers is n(n + 1)/2. Can you find a way to rewrite this statement so that it is true for any 
sequence of n consecutive integers? 

Consistent with the theoretical framing presented here, participants’ responses to these 
tasks were analyzed and categorized by comparing the ways that the participants exemplified the 
anchor domain and target domain, to the presence of evidence that illuminated the generality 
encoded in the examples that participants created, to the relationships (if any) that the 
participants analyzed while responding, and to the relationships that participants constructed 
while responding. 

Findings 
The comparative analysis of responses yielded five qualitatively distinct approaches to 

the tasks presented in the methods section of this preliminary report. Rough descriptions of each 



	

	

approach are presented in Table 1, and illustrative examples will be shared here, as space 
permits. 
Characterizing Approach: Don, RP 

In his response to the RP task, Don (a pseudonym) wrote examples of products of three 
consecutive whole numbers as shown in Figure 3. He noted that each 3-tuple contained an even 
number and a 3, and hypothesized that products of 3 consecutive whole numbers might always 
be divisible by 6. He then tested this for 4*5*6, 5*6*7, 6*7*8, and 7*8*9. This part of Don’s 
response consists of characterizing the collection of examples without reference to the anchor 
statement. 

 
Figure 3. Don's examples of products of 3 consecutive whole numbers. 
Oblique Approach with Specific Examples: Chris, RP 

Chris created a set of specific examples similar to those used by Don (see Figure 4). 
However, instead of developing a claim inductively from examples, Chris searches for those 3-
tuples that satisfy the anchor claim – in other words, those whose products are divisible by 12. 

 
Figure 4. Chris' examples of 3-tuples in the RP task. 
Unraveling and synthesizing: Jolene, RP 

Jolene approached the RP task by analyzing the anchor claim. She determined that a 4-
tuple would always have two even factors using a generic representation shown in Figure 5, and 
used the placeholder representation shown in Figure 6 to conclude that a 4-tuple would always 
include one number that was divisible by 3. She then used these understandings to synthesize the 
claim that a 3-tuple would always include one number divisible by 2 and one divisible by 3 and 
would, therefore, have a product that is divisible by 6. 

	
Figure 5. Jolene's general representation of 4-tuple. 

	

Figure 6. Jolene's placeholder representation. 

Unraveling and adapting: Edward, RS 

Edward conceptualized an arbitrary sequence of positive consecutive integers as the difference 
between two sequences of counting numbers: 

Let's say we started just at 5 and . . . . I wanted to know the sum of the numbers from 5 to 
10. I would do the first ten counting numbers and then I would take away the first four 
counting numbers. 



	

	

Edward then used this relationship between the target domain and the anchor domain as a 
conceptual lens through which to adapt the anchor claim, writing a target claim that the sum of a 
sequence of integers from k to n would be computed through the expression in Figure 7. 

 

Figure 7. Edward’s formula for the sum from k to n. 

Table 1  
Approaches to Reconstruction Tasks 

  Approaches 
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 Structural Oblique Empirical 

Collection of 
Specific 
Examples  

Unravel 
relationships 
between the 
anchor domain 
and anchor 
claim, then 
synthesize 
relationships 
from the target 
domain to a 
target claim. 

Unravel 
relationships 
between the 
anchor domain 
and the target 
domain, then 
adapt the 
anchor claim. 

Find examples 
that satisfy the 
anchor claim. 

Reason 
inductively. 

Generic 
example  

  

General 
representation  

  

The essential differences among these approaches lies in the generality with which the 
elements of the domain are represented and in the relationship that grounds the response. 
Structural approaches seem to be amenable to the greatest variation in ways of representing the 
anchor and target domains, and are more well-suited to general representations than are 
approaches in which the target claim is populated without calling on an analysis of relationships 
among the anchor statement and target domain. 

Implications 
As one advances in mathematics education, strategies for developing general statements 

do not necessarily become more sophisticated. However, some individuals develop the ability to 
analyze and utilize mathematical structure with respect to general representations to produce new 
general statements. Questions for those who attend this session will be: 

1. Are there particular tasks that might provoke more structural approaches? 
2. What teaching strategies might help students learn to use more structural approaches? 
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