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This paper presents some initial findings of an investigation focused on mathematics teachers’ 
ways of thinking about proportional relationships, with an emphasis on multiplicative reasoning. 
Deficiencies in proportional reasoning among teachers can be serious impediments to the 
development of robust reasoning among their students. As such, this study focuses on how 
mathematics teachers reason through tasks that involve proportional reasoning by addressing 
the following two research questions: (1) In what ways do teachers reason through a specific 
task designed to elicit proportional reasoning? and (2) What difficulties do teachers encounter 
while reasoning through such tasks? This paper discusses the construction of a robust 
proportional reasoning structure in the context of a specific task and discusses one particular 
obstacle, which impedes the construction of such a structure.  
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Recent reform efforts to institute the Common Core State Standards for Mathematics 

(CCSSM, 2010) have called for an increased emphasis on multiplicative and proportional 
reasoning, particularly in the middle grades. According to Lesh et al. (1988), proportional 
reasoning is the capstone of elementary school mathematics and the cornerstone of high school 
mathematics. One of the most critical elements of proportionality is the ability to make sense of 
the multiplicative relationships among the relevant quantities. Multiplicative reasoning is rooted 
in the ability to reason quantitatively and make sense of contexts involving multiplicative 
structures. The CCSSM standards themselves call for students to be able to “describe a ratio 
relationship between two quantities” (CCSS.math.content.6.rp.a.1). Yet historically, the 
mathematics traditionally taught in K-12 has emphasized additive reasoning and ill-
conceptualized procedures for multiplicative situations, rather than building productive ways of 
thinking about quantities, relationships among quantities, ratios, multiplicative comparisons, and 
proportional relationships. This paper describes an investigation conducted with middle school 
teachers who are participating in a large-scale professional development program designed to 
improve their conceptual understanding of mathematics in the middle grades. Specifically, this 
study describes teachers’ conceptions of proportionality through the lens of a proportional 
reasoning structure and highlights the challenges that teachers encountered. 

 
A Discussion of the Literature 

Centrally nested in the idea of multiplicative reasoning is the ability to first conceive of the 
quantities that need to be compared multiplicatively. In this study, the notion of quantity is 
aligned with Thompson’s (1993) definition of quantity: “a person constitutes a quantity by 
conceiving of a quality of an object in such a way that he or she understands the possibility of 
measuring it” (p. 165). Thompson (1994) refers to the mental operation of conceiving one 
quantity in relation to another as a quantitative operation. Thompson also points out that “a 
quantitative operation creates a structure – the created quantity in relation to the quantities 



	  

operated upon to make it work” (p. 185). The mental structure created as a result of a 
quantitative operation ultimately supports images of other numerical operations.  

Reasoning about quantities is necessary for reasoning about proportional relationships. 
Cramer et al. (1993) outlined several components involved in proportional reasoning: (1) 
understanding the multiplicative relationships that exist within proportional situations, (2) being 
able to differentiate proportional situations from non-proportional ones, (3) realizing the 
existence of and relationships between multiple solution pathways, and (4) being unaffected by 
the situational context or the types of numbers in the task. Kaput and West (1994) found that the 
context of the problem, the language of the task, the kinds of quantities involved, and the 
numerical values of the quantities all impact student thinking. 

 
Methodology 

This investigation focuses on nine middle school mathematics teachers who were recruited 
for this investigation based on their participation in a large-scale, two-year professional 
development program. Leveraging Goldin’s (2000) principles, this study incorporated semi-
structured, task-based interviews for investigating teachers’ thinking when working through 
tasks involving proportional relationships. The teachers participated in five, one-hour videotaped 
interviews. The research team analyzed all interview sessions with the lens of characterizing 
teachers’ thinking and reasoning as they grappled with the tasks. The design and implementation 
of this study was guided by the following two research questions: (1) In what ways do teachers 
reason through a specific task designed to elicit proportional reasoning? and (2) What 
difficulties do teachers encounter while reasoning through such tasks?  
 

Creating a Robust PR Structure 

In situations where two quantities are proportional, there exists an opportunity to construct a 
structure that can be utilized when addressing missing value proportion problems. A proportional 
reasoning (PR) structure is a network of multiplicative relationships that exist among the values 
of proportional quantities. This section of the paper presents one PR structure that is robust and 
founded on meaningful reasoning. Consider the Shape Task, which was used in this study: 

  
In the Shape Task, it is important to recognize that the value of an area, measured in 

triangles, is proportional to the value of the same area measured in rectangles. Most of the 
teachers in the study were able to deduce through various methods that the area of 4.5 triangles is 
the same as the area of five rectangles. However, it was not trivial for many teachers to 

The Shape Task: Suppose the area of 3 triangles is the same as the area of 2 squares. 

   
Also, suppose the area of 3 squares is the same as the area of 5 rectangles. 

 
What is the area of 2 triangles, measured in the rectangle areas? Explain your reasoning. 



	  

subsequently determine the amount of rectangles that is equivalent to two triangles, and a few 
were not able to overcome this challenge. We present data in this paper that highlights this one 
particular obstacle. 

For the Shape Task, the constant of proportionality is 10/9 (found by computing 5÷4.5); 
which results from a multiplicative comparison of the two area measurements, five rectangles to 
4.5 triangles. Kaput & West (1994) refer to this comparison of 10/9 (or its reciprocal of 9/10) as 
an across-measure comparison because it is a multiplicative comparison of two distinct ways to 
measure one quantity (i.e. area in triangles versus area in rectangles). We interpret the across-
measure comparison of 10/9 as 10/9 rectangles for every one triangle, just as we interpret 9/10 as 
9/10 of a triangle for every one rectangle. 

Another approach is to construct a scale factor within the same measure (e.g. scaling one 
area measured in triangles, to a new area measured in triangles). By multiplicatively comparing 
two triangles to 4.5 triangles, the scale factor of 4/9 (found by computing 2÷4.5) can be 
constructed and then applied to the second measure (area in rectangles) to maintain the 
proportional relationship. Kaput & West (1994) call the comparison of 4/9 (or its reciprocal of 
9/4) a within-measure comparison because it is a multiplicative comparison of two values within 
the same measure space, each value expressed using the same unit. We interpret the within-
measure comparison of 4/9 as representing that the area of 2 triangles is 4/9 times as large as the 
area of 4.5 triangles. A robust PR structure includes both ways of reasoning – across-measure 
and within-measure – as well as the associated reverse operations. The construction of a robust 
structure is depicted in the figure below. 

 

Identify both comparisons Use both comparisons Complete the structure 

   
 

The ability to construct a PR structure as described above depends on the refinement of 
other ways of thinking about mathematics. For example, one should be able to use division to 
evaluate multiplicative comparisons as instinctively as one might use subtraction to evaluate 
additive comparisons. Our data indicates that utilizing division to evaluate multiplicative 
comparisons is not trivial for some middle school mathematics teachers. Unless one is able to 
meaningfully determine the across- and within-measure comparisons, one will not be able to 
construct the PR structure described. 
 
Where is the relationship of cross-products: 𝟒.𝟓 𝟐𝟎

𝟗
= (𝟐) 𝟓 ? 

The PR structure that we describe deliberately omits the cross-product relationship because 
it is not a necessary component of a robust proportional reasoning structure. Research has shown 
that students and teachers who leverage the procedure of cross-multiplying as a strategy for 
solving proportional tasks often lack the conceptual knowledge to explain why this strategy 
works (Cramer et al., 1993). An important goal in mathematics is to help students develop the 



	  

ability to make sense of their world and to reason through problems. As supported by NCTM’s 
Principles to Action (2014), procedural fluency should emerge from conceptual understanding. 
When trying to reason why cross-multiplication is effective, it can be challenging to explain the 
meaning of the cross-products. In the Shape Task, we have difficulty making sense of the 
product of an area (measured in triangles) and an area (measured in rectangles). Consequently, 
we claim that techniques involving cross-multiplication (or other procedures) should only be 
introduced after a solid foundation of proportional reasoning is constructed. 
 

Discussion of Findings 

In this study, initial data have revealed that the difficulties teachers encountered while 
solving the Shape Task were consistent with past research findings about student thinking (Kaput 
& West, 1994; Thompson, 1994). This study contributes to the field by investigating obstacles 
that teachers encounter while reasoning about situations that involve proportional relationships. 
The following is a discussion of the data from two teachers who grappled with the Shape Task, 
each of whom demonstrated difficulty in answering the mathematical question: What do I need 
to multiply this by to get that? 
 
The Case of Ellie: 

Within the first couple of minutes of engaging with the task, Ellie deduced that 4.5 triangles 
was equivalent to five rectangles. She recognized the need to scale 4.5 triangles to two triangles, 
but she was unable to determine the scale factor by which to do so. 

 
Ellie: I have to divide nine halves by, to get to two, I have to divide it by two ninths? No, 
that’s going to give me one…What I was trying to do was, okay, I have to get down to two 
triangles (points at the 4.5 triangles drawn on the page)… 
 

Ellie’s inability to determine how to scale 4.5 triangles to two triangles led her to abandon a 
sensible way of thinking – a way of thinking that is essential to the construction of the PR 
structure set forth in this paper. During another attempt to answer the question, she again 
encountered difficulty when trying to scale 1.5 triangles to two triangles. 

 
Ellie: So then I’ve confused myself again. 
Interviewer: How have you confused yourself? What are you thinking? 
Ellie: …How do I get to two from one and a half? What do I have to multiply by? And I 

could not, for the life of me, think of what that would be. But it would have to be 
(long pause) four thirds? Does that work? 

 
Although successful in determining how to scale 1.5 triangles to two triangles, the cognitive load 
was heavy and she ultimately relied on algebraic methods – writing down and then solving the 
algebraic equation !

!
x = 2. 

 
The Case of Anne: 

Like Ellie, Anne quickly deduced that 4.5 triangles were equivalent to 5 rectangles. Anne 
unitized this relationship to 0.9 triangles per one rectangle, but struggled to leverage this 
information productively. 



	  

 
Anne: So two full triangles would be…Oh now for some reason I’m getting stuck and I 
know all I have to do is enlarge it. What do I do? Okay, um, to get to two full triangles… 

 
Unable to multiplicatively scale 0.9 triangle to two triangles, Anne relied on additive reasoning 
to combine the amounts of triangles (see written work below).   

 
 
 

 
 

This initial approach was eventually abandoned since Anne could not determine how many 
rectangles were equivalent to 2/10 of a triangle. After moving on with other tasks in the 
interview, Anne returned to the Shape Task and successfully completed the task using a modified 
strategy of scaling three triangles to two triangles, which did not seem to pose a challenge. 
 

Anne: But I want two triangles. I have three triangles. So I’m gonna multiply this, I’m 
just gonna multiply this whole thing by 2/3, will let me say two triangles. 
 

Anne’s initial challenge with the task could be indicative of issues pertaining to scaling with 
fractional numbers – scaling from a whole number to another whole number is less cognitively 
demanding than scaling from a fraction to a whole number. According to Cramer et al. (1993), 
Anne does not have a robust ability to reason proportionally because the numbers in the task 
affected her reasoning. 
 

Conclusion and Discussion Questions 

The initial data reveal that several teachers struggled to evaluate multiplicative comparisons, 
which is a severe hindrance to the construction of the robust PR structure that we have described. 
Also, the data reveal that teachers in this study have inconsistent – and sometimes incoherent – 
ways of thinking about the quantities and their proportional relationships. At times, the teachers 
in the study lose track of the quantities they are relating together and they experience difficulty in 
describing how the quantities are related. Other instances have revealed that teachers rely on 
additive reasoning in order to cope with an inability to compare two quantities multiplicatively. 
A PR structure that sensibly relies on multiplicative comparisons may have provided the teachers 
with a conceptual understanding of proportionality to further facilitate their thinking and mitigate 
their struggles. As part of the presentation, the following questions will be posed and discussed 
to further the direction of this research investigation: (1) Have other PD researchers encountered 
similar obstacles to proportional reasoning and, if so, how have they addressed them? (2) How 
can we develop video coding frameworks to investigate proportional reasoning? (3) Are there 
researchers who already have such coding frameworks that we could adopt? 
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