
Changes in assessment practices of calculus instructors  
while piloting research-based curricular activities 

We report our analysis of changes in assessment practices of introductory calculus 
instructors piloting weekly labs designed to enhance the coherence, rigor, and accessibility of 
central concepts in their classroom activity. Our analysis compared all items on midterm and 
final exams created by six instructors prior to their participation in the program (355 items) 
with those they created during their participation (417 items). Prior exams of the six 
instructors were similar to the national profile, but during the pilot program increased from 
11.3% of items requiring demonstration of understanding to 31.7%. Their questions 
involving representations other than symbolic expressions changed from 36.7% to 58.5% of 
the items. The frequency of exam questions requiring explanations grew from 4% to 15.1%, 
and they shifted from 0.8% to 4.1% of items requiring an open-ended response. We examine 
qualitative data to explore instructors’ attributions for these changes. 
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One component of the recent national study of calculus programs in the United States 
(Bressoud, Mesa, & Rasmussen, 2015) examined the assessment practices of instructors of 
these courses. Tallman & Carlson (2012) analyzed the content of 150 Calculus 1 final exams 
sampled from a variety of post-secondary institutions in the larger study along three 
dimensions in their Exam Characterization Framework (ECF) detailing the cognitive 
orientation, mathematical representations, and answer format of each item. The study 
demonstrated that few final exam items required a demonstration or application of 
understanding of the material, primarily involved only symbolic representations, and rarely 
required explanation or involved open-ended responses. One explanation of these results may 
be that faculty assessment practices simply reflect the expectations of institutionally adopted 
curriculum. Lithner (2004), for example, found that a majority of exercises in calculus 
textbooks could be solved by choosing examples or theorems elsewhere in the text based on 
surface-level features and mimicking the demonstrated procedures.  

We examined the assessment practices of pilot instructors implementing activities in their 
calculus courses designed to simultaneously enhance the coherence, rigor, and accessibility 
of student learning throughout the course. Project CLEAR Calculus provided weekly labs in 
which students participated in group problem-solving activities to scaffold the development 
of central concepts in the course along with instructor training and support to implement the 
labs. While the project did not address student assessment through exams, we hypothesized 
the conceptual focus in the labs and requirements of student write-ups would significantly 
impact the instructors’ assessment practices. We address the following research questions: 
1. How do the pilot instructors’ exam questions compare to their previous exams along the 

three ECF dimensions? 
2. What factors do the pilot instructors attribute for any shifts in their assessment practices? 

 
Background 

Limit concepts are at the core of mathematics curriculum for STEM majors, but decades 
of research have revealed numerous misconceptions and barriers to students’ understanding. 
Building off of work by Williams (1991, 2001), Oehrtman (2009) identified several cognitive 
models employed by students that met criteria for emphasis across limit concepts and for 
sufficient depth to influence students’ reasoning. Williams noted that frequently students 
attempt to reason about limits using intuitive ideas associated with boundaries, motion, and 



approximation. Oehrtman found that, unlike most other cognitive models employed by 
students, the structure of students’ spontaneous reasoning about approximations shares 
significant parallels with the logic of formal limit definitions while being simultaneously 
conceptually accessible and supporting students’ productive exploration of concepts in 
calculus defined in terms of limits. With this in mind, we contend that a false dichotomy 
exists between a formally sound, structurally robust treatment of calculus on the one hand 
and a conceptually accessible and applicable approach on the other. By adopting an 
instructional framework utilizing approximation and error analyses, we designed labs based 
on criteria listed in Figure 1 intended for weekly use in an introductory calculus sequence. 

Design Criteria 1. Language, notation, and constructs used in the labs should be conceptually accessible to 
introductory calculus students. 

Design Criteria 2. The structure of students’ activity should reflect rigorous limit definitions and arguments 
without the language and symbolism of formal -  and -N notation that is a barrier to most 
calculus students’ understanding. 

Design Criteria 3. The labs should present a coherent approach across all concepts defined in terms of limits 
and effectively support students’ exploration into these concepts. 

Design Criteria 4. The central quantities and relationships developed in all labs should be coherent across 
representational systems (especially contextual, graphical, algebraic, and numerical 
representations) 

Design Criteria 5. All labs should foster quantitative reasoning and modeling skills required for STEM fields. 
Design Criteria 6. The sequence of labs should establish a strong conceptual foundation for subsequent 

rigorous development of real analysis. 
Design Criteria 7. All labs should be implemented following instructional techniques based on a constructivist 

theory of concept development. 

Figure 1. Design criteria for the labs. 

When left unguided, students’ applications of intuitive ideas about approximations are 
highly idiosyncratic (Martin & Oehrtman, 2010a, 2010b; Oehrtman, 2009). To systematize 
students’ reasoning concerning approximation ideas and support an accessible yet rigorous 
approach to calculus instruction, throughout the labs students are engaged in contextualized 
versions of the questions in Figure 2. These questions develop coherence between structural 
components, reveal operations performed on these components, and highlight relationships 
among the operations, foundational for the generation of new understandings. 
 

Question 1.   Explain why the unknown quantity cannot be computed directly. 
Question 2.   Approximate the unknown quantity and determine, if possible, whether your approximation is an 

underestimate or overestimate 
Question 3.   Represent the error in your approximation and determine if there is a way to make the error 

smaller. 
Question 4.   Given an approximation, find a useful bound on the error. 
Question 5.  Given an error bound, find a sufficiently accurate approximation. 
Question 6.   Explain how to find an approximation within any predetermined bound. 

Figure 2. Approximation questions consistent across most labs. 
 

Exam Characterization Framework 

Tallman and Carlson (2012) developed a three-dimensional framework to analyze a large 
sample of post-secondary Calculus 1 final exams and generate a snapshot of the skills and 
understandings that are currently being emphasized in college calculus. Their Exam 
Characterization Framework (ECF) characterizes exam items according to three distinct item 
attributes: (a) item orientation, (b) item representation, and (c) item format. 



 
Item Orientation 

Tallman and Carlson adapted the six intellectual behaviors in the conceptual knowledge 
dimension of a modification of Bloom’s taxonomy (Anderson & Krathwohl, 2001) to 
characterize the cognitive demand of exam items. The six categories of item orientation are 
hierarchical with the lowest level requiring students to remember information and the highest 
level requiring students to make connections (see Table 1). 
 
Table 1 
Item orientation codes (adapted from Tallman & Carlson, 2012) 

Cognitive Behavior Description 

Remember Students are prompted to retrieve knowledge from long-term memory. 

Recall and apply 
procedure 

Students must recognize what procedures to recall and apply when directly prompted to 
do so. 

Understand Students are prompted to make interpretations, provide explanations, make comparisons 
or make inferences that require an understanding of a mathematics concept. 

Apply understanding Students must recognize recognize the need to use a concept and apply it in a way that 
requires an understanding of the concept. 

Analyze Students are prompted to break material into constituent parts and determine how parts 
relate to one another and to an overall structure or purpose.  

Evaluate Students are prompted to make judgments based on criteria and standards.  

Create Students are prompted to put elements together to form a coherent or functional whole; 
reorganize elements into a new pattern or structure.  

  
Item Representation 

The item representation domain of the ECF involves classification of both the 
representation of mathematical information in the task as well as the representation the task 
solicits in a solution (see Table 2). A task statement or solution may involve multiple 
representations. Since many tasks can be solved in a variety of ways and with consideration 
of multiple representations, we observed Tallman and Carlson’s recommendation of 
considering only the representation the task requires. 
 
Table 2 
Item representation codes (Tallman & Carlson 2012) 

Representation  Task statement Solicited solution 

Applied/ 
modeling 

The task presents a physical or 
contextual situation. 

The task requires students to define relationships 
between quantities or use a mathematical model 
to describe a physical or contextual situation.

Symbolic The task conveys information in the 
form of symbols.  

The task requires the manipulation, interpretation, 
or representation of symbols. 

Tabular The task provides information in the 
form of a table.  

The task requires students to organize data in a 
table. 

Graphical The task presents a graph. The task requires students to generate a graph or 
illustrate a concept graphically.  

Definition/ 
theorem 

The task asks the student to state or 
interpret a definition or theorem. 

The task requires a statement or interpretation of 
a definition or theorem. 



Proof 

 

The task presents a conjecture or 
proposition. 

The task requires students to demonstrate the 
truth of a conjecture or proposition.  

Example/ 
counterexample 

The task presents a proposition or 
statement. 

The task requires students to produce an example 
or counterexample. 

Explanation Not applicable.  The task requires students to explain the meaning 
of a statement. 

 
Item Format  

The third and final dimension of the ECF is item format. The most general distinction of 
an item’s format is whether it is multiple-choice or open-ended. However, there is variation 
in how open-ended tasks are posed. For this reason, Tallman and Carlson define three 
subcategories of open-ended tasks: short answer, broad open-ended, and word problem. A 
short answer item is similar in form to a multiple-choice item, but without the choices. A 
student can anticipate the form of the solution of a short answer item upon reading the item. 
In contrast, the form of the solution of a broad open-ended item is not recognizable upon 
immediate inspection of the item. Broad open-ended items therefore elicit various responses, 
with each response typically supported by some explanation. Word problems can be of a 
short answer or broad open-ended format, but prompt students to create an algebraic, tabular 
and/or graphical model to relate specified quantities in the problem, and may also prompt 
students to make inferences about the quantities in the context using the model. Also, tasks 
that require students to explain their reasoning or justify their solution can be supplements of 
short answer or broad open-ended items.  

 
Exam Characterization Results of the National Sample 

Tallman and Carlson coded 14.83% of items in their randomly-selected sample of 150 
post-secondary calculus I final exams, collectively containing 3,735 items, at the 
“Understand” level of the item orientation taxonomy or higher. Their coding also revealed 
that 34.55% of items in their sample were not stated symbolically and required a symbolic 
representation in the solution. Also, Tallman and Carlson found that only 1.34% of items in 
their sample were broad open-ended questions.  

 
Methods 

Twelve instructors piloted up to 30 labs in 24 different first and second semester calculus 
classrooms at eight different institutions from Fall 2013 to Spring 2015. Training began with 
in-person and online meetings with pilot instructors before the start of the Fall semesters, and 
most of the instructors attended a three-day workshop outlining the goals, strategies, and 
activities of the project. We supported their implementation of the labs throughout the fall 
and spring semesters with online meetings with project personnel. The project website 
provided instructors with student materials, instructor notes for each lab, solutions, grading 
rubrics, and supporting handouts and virtual manipulatives. Support meetings frequently 
included discussions of assessing lab write-ups but did not include discussions of creating or 
grading exams. 

To document changes in the pilot instructors’ assessment practices, we collected mid-
term and final exams from the calculus classes the instructors taught prior to implementing 
CLEAR Calculus labs and from the classes in which they were implementing the labs. Five 
of the instructors either had not previously taught calculus or were required to give exams 



that were created by other faculty, so these all exams from these instructors were removed 
from the comparative sample.  

A lead researcher in the development of the ECF and its application in the national study 
trained two members of our team to code with the framework resulting in 89% agreement 
between coding the training sample. Subsequent training focused on discrepancies. One 
member of our team has coded 355 items from 21 exams given by six instructors prior to 
using CLEAR Calculus labs and 417 items from 22 exams given by the same instructors 
while implementing the labs. A small number of exams remain to be coded, and we will 
choose a random sample of items to be coded by the second team member and the trainer to 
determine agreement and resolve discrepancies.  

We collected self-reported characterizations on the impact of pilot instructors’ teaching 
and exams through their implementation of CLEAR Calculus labs. We are currently 
analyzing this data for themes in and for shifts in assessment priorities. 

 
Preliminary Results 

Our analysis of exams given by our pilot instructors prior to participating in the project 
revealed a pattern very similar to the national profile found by Tallman & Carlson (2012) as 
shown in Table 3. In contrast, while implementing the labs the instructors nearly tripled the 
frequency at which they asked questions requiring a demonstration or application of 
understanding (from 11.3% to 31.7%) and included representations other than symbolic 
expressions at over 1.5 times the previous frequency (36.7% to 58.5%). They asked for 
explanations nearly 4 times as often (4% to 15.1%) and included broad open-ended items 
over 5 times as often (0.8% to 4.1%). 

 
Table 3 
Shifts in CLEAR Calculus pilot instructor’s assessment practices. 

 Tallman & Carlson 
National Sample 

(3735 items) 

Pilot instructors prior 
to CLEAR Calculus

(355 items) 

Pilot instructors with 
CLEAR Calculus 

(417 items) 

Items requiring understanding 
or higher level reasoning 14.83% 11.3% 31.7% 

Items involving representations 
other than symbolic 34.55% 36.7% 58.5% 

Items requiring explanation 2.36% 4.0% 15.1% 

Broad open-ended items 1.34% 0.8% 4.1% 

 
Discussion Questions 

As our coding is nearly complete our presentation of the complete analysis will be very 
close to the data shown above. In addition, we will present themes from our qualitative data 
on instructors’ attributions for these changes as well as interesting patterns in the differences 
of the individual instructors. We will seek a discussion with the audience on questions of 
additional ways to analyze the ECF data to reveal other insights, potential follow-up 
questions to pursue with the instructors represented in this data, and additional data we may 
collect as we work with our third round of pilot instructors. 
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