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Abstract.  Many upper-division physics courses have as goals that students should ‘think like a physicist.’  
While this is not well-defined, most would agree that thinking like a physicist includes quantitative reasoning 
skills:  considering limiting cases, dimensional analysis, and using approximations.  However, there is often 
relatively little curricular support for these practices and many instructors do not assess them explicitly.  As 
part of a project to investigate student mathematical learning in upper-division physics, we have developed a 
number of written questions testing the extent to which students in an upper-division course in Mathematical 
Methods in Physics can employ these skills.  Although there are limitations to assessing these skills with written 
questions, they can provide insight to the extent to which students can apply a given skill when prompted.   
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Introduction 
 
This work is part of a collaboration to investigate student learning and application of 

mathematics in the context of upper-division physics courses. Our project seeks to study 
student conceptual understanding in upper-division physics courses, investigate models of 
transfer, and to develop instructional interventions to assist student learning. 

While physics education research (PER) has primarily focused on introductory-level 
courses, there are increasing efforts to expand into the upper division [1].  The core 
sophomore- and junior-level theory and laboratory courses taken by most physics majors 
have begun to receive the attention of researchers and curriculum developers, including 
electricity and magnetism [2], thermal physics [3], classical mechanics [4], quantum 
mechanics [5], and advanced laboratories [6].  One key course that remains under-researched 
(with a few exceptions [7]) is a course taught by most departments that is commonly known 
as “mathematical methods.” Unlike similarly-named courses for prospective mathematics 
teachers, this highly theoretical course focuses on the mathematical techniques that students 
will encounter in upper-division physics courses.  Such a course is typically intended to serve 
as a bridge between introductory level courses and the more challenging physics and 
mathematics students encounter in the core upper-level theory courses in the physics major 
(particularly electricity and magnetism, classical mechanics, and quantum mechanics).  

 Typically the learning goals for courses of this nature (called MM courses for this 
paper) focus on content goals, with a syllabus that covers a list of topics including differential 
and integral calculus, series, complex numbers, vectors and vector calculus, differential 
equations, and linear algebra.  As if this daunting list of topics were not sufficient, often the 
MM course also has stated or implicit goals that go beyond specific physics and mathematics 
context.  For example, students in these courses are expected to ‘think like a physicist’ when 
solving quantitative problems.  However, despite its seeming importance, this phrase is not 
always operationally defined.  Examples of skills that might be included in this term include 
connecting physical intuition with mathematics, checking units and performing dimensional 
analysis, considering limiting cases, and using approximations.  While instructors value these 
skills, and there has been some previous discussion of them [8], their value is often left 
implicit and they are not often explicitly taught or assessed.   

In this portion of the project, we have sought to investigate the development of 
mathematical understanding that goes beyond procedural skill and calculation, to probe the 
quantitative reasoning skills whose development is often left implicit.  A key goal of our 



larger project is to develop a series of tasks that would be suitable for use by instructors in the 
MM course.  For this report, we describe preliminary efforts to develop written tasks that ask 
students to apply such skills and to document student responses to them.  For the purpose of 
this paper, we will refer to questions designed to assess several quantitative reasoning skills.  
The set of these skills is not intended to be complete, but we have identified several that 
appear to be relevant as starting points:  

• Using dimensional / unit analysis 
• Testing expressions with limiting cases 
• Using approximations, e.g., with Taylor series 
• Identifying errors in solutions 
• Predicting the effects of problem changes on the resulting solution 
During the current study we have examined several of these skills.  Examples of using 

approximations and of predicting the effects of changes to a problem on the resulting solution 
have been described previously [9, 10].  For this short paper we restrict the discussion to the 
second: limiting cases.  

 This work has taken place in the context of a MM course taught at a large public 
comprehensive university serving a diverse student population.  The course is required for 
physics majors and is a prerequisite for upper-division theory courses; for most students it is 
one of the first upper-division courses taken.  The course uses the text by Boas [11] and 
covers a fairly standard list of topics.  It meets for two 75-minute blocks per week.  The 
course has as prerequisites three semesters of calculus, and most students have completed at 
least two semesters of introductory physics.  The author has taught the course six times, with 
enrollments between 12 and 19.  Data shown is from written responses to the Evaluate the 
Expressions task shown below. 

Theoretical Perspective 
 This portion of our project is driven by practice; we are seeking to learn what is 

difficult for students and develop instructional interventions. The theoretical framework 
guiding our analysis for this portion is “identifying student difficulties” [12].   

 A growing body of work in PER has examined student use of mathematics in physics. 
In particular, several models have been proposed to describe student use of mathematics.  In 
each of these models, successfully executing the mathematical procedure in question is only 
one element of success.  Redish has proposed a framework to describe student usage of 
mathematics in science course [13], describing stages of modeling, processing, interpreting, 
and evaluating.  For the specific case of upper-division physics courses, Wilcox et al. have 
proposed the ACER framework ‘to guide and structure investigations of students’ difficulties 
with the sophisticated mathematical tools used in their physics classes.’ [14] In this 
framework, students must activate the appropriate mathematical tool in addition to 
constructing a model, executing the mathematics, and then reflecting on results.   

In traditional physics courses, instruction and assessment tend to focus disproportionately 
on what Redish describes as the processing phase, or what the ACER framework frames as 
executing mathematics. In a recent paper, Redish states that ‘our traditional way of thinking 
about using math in physics classes may not give enough emphasis to the critical elements of 
modeling, interpreting, and evaluating’ [12]. The tasks in this study reflect our attempt to 
investigate other aspects of mathematical thinking.  For example, to probe reflection or 
evaluation of results, students might be asked to evaluate expressions for correctness or 
identify errors in solution, rather than performing procedures to generate expressions.  

We have examined the RUME literature for corresponding studies but there appears to be 
relatively little focus on these sorts of skills, at least at this level of instruction.  The work by 
Sherin describing how physics students read mathematical expressions bears upon the task 



described below [xx].  Thompson has examined ‘quantitative reasoning’ and its relationship 
to modeling of phenomena [1x5].  In addition, this project as a whole considers transfer 
broadly, as we examine how students apply their mathematical knowledge in the context of 
physics courses, and we have been guided in part by the work of collaborator Wagner [1x].   

It is important to note there are limitations of the current study, which artificially 
separates these tasks from a problem solution. Qualitative studies of students in the process of 
solving problems can help to give insights into when and how students activate such 
resources and at what phase of problem solving they are employed.  This project has a more 
modest goal, asking whether students can apply skills when their use is explicitly cued.  
Additional qualitative work, including interviews, is ongoing. 

Methodology 
 For the purpose of this paper, we will focus on a sample task that is illustrative of the 

quantitative reasoning skills that we are describing.  This task, which we refer to as the  
Evaluate the Expressions task, involves the evaluation of mathematical expressions for 
correctness. The problem is posed on the first day of the MM course on an ungraded quiz 
subsequently explored in a large group discussion while the tasks projected on a screen. 

 

 
 

 
FIGURE 1.  A written task in which students are asked to evaluate multiple expressions for 

possible correctness given a physical situation.  
 

 The task describes a simple physical system (known in physics as an ‘Atwood’s 
machine’) in which two massive blocks are connected by a string across a pulley (see Figure 
1).  Students are shown three expressions for the acceleration of one of the two blocks and 
asked to determine whether the expressions could be correct.  (All three expressions are 
incorrect.)  The Atwood’s machine is a common instructional task and widely used in physics 
courses as an example of the application of Newton’s laws.  Most students would have solved 
a similar problem in their introductory mechanics course, encountering the problem first in 
the case of a massless pulley, solving the problem by drawing free body diagrams for the two 
blocks and applying Newton’s second law with appropriate constraints to generate equations 
of motion.  Later, in the section of the course focusing on rotational dynamics, the effect of 
torques on the pulley mass are treated explicitly.   

The problem is different from many tasks that students have encountered to this point in 
that it asks for evaluation (per Redish) or reflection (per Wilcox) rather than a procedural 
computation.  Students are not asked to solve the problem, which has no numerical values. 
The expectation is that students will use quantitative reasoning to arrive at an answer, by 
checking limiting cases (e.g., considering extreme values of variables; a very large pulley 
mass means small acceleration) or by identifying cases in which the expression becomes 
unphysical (e.g., in the second expression, if M/2 = m1+m2 acceleration would be infinite).  

Consider the motion of two blocks connected to form an Atwood’s 
machine.  The masses of the two blocks are m1 and m2 and the mass of the 
pulley is M.  The following expressions are proposed for the acceleration of 
block 1.  For each, evaluate whether the expression could be correct an 
explain briefly: 
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The problem has been administered in three sections of MM (N = 47) before any 
instruction.  Student written responses were examined and coded.  Answers were coded for 
answer and explanation.  Student responses are tentatively assigned to categories that arise 
iteratively according to the major themes identified in the data.  For the explanations, we use 
open coding (drawn from grounded theory), in which the entire data corpus is examined for 
common trends, and all data are reexamined and grouped into the defined categories.  

Results 
 Student responses were coded iteratively based on both the correctness of their 

assessment and the explanation used in support.  In the final version of the rubric, twelve 
distinct but not exclusive codes were used, with an ‘other/blank’ category used when students 
provided no intelligible explanation.  Of the twelve codes, only a few were commonly used.  
We provide brief examples of several of the most common codes and criteria in Table I. 

 While some of the codes that emerged were expected, many of them were not.  For 
example, a few students evaluated the correctness based on whether the resulting expression 
would have the correct algebraic sign, although no coordinate axis is specified. Of course the 
written explanation may not indicate fully the underlying reasoning that students are using.  
For example, a few students gave explanations in which they stated that the rotational inertia 
of the massive pulley mass would decrease the acceleration.  Others simply noted the 
presence or absence of the pulley mass in the expression.  We cannot be sure whether the 
students in two groups were using similar reasoning.   

 
TABLE 1. Sample codes for evaluate the expression task.  The codes were not exclusive, 

so a student response might include both mechanism and mass difference, for example. 
Code Description  

Solution Attempted to solve problem directly 
Variables Noted presence or absence of variables in expression 
Mechanism Described physical mechanism for motion (forces, energy) 

Mass difference Commented on presence or absence of term describing 
difference in masses ±(m2-m1) 

 
The data indicate that this task is challenging task for students.  Only one student offered 

a completely correct solution.  Ten others identified all three solutions as incorrect but with 
incomplete or incorrect explanations.  Many students gave no response.  About 10% of 
students were coded as ‘blank’ for the first expression, and 20% for the second.  Written 
explanations often indicated a lack of confidence in responses:  “This is not correct because 
the mass of the pulley needs to be incorporated (although to tell the truth I am not sure how).” 

The approaches used by students varied considerably, and while many did give 
explanations that call upon physical intuition or an attempt to parse the mathematical 
expression, others seemed to respond as though this task were a more typical end-of-chapter 
problem. About 10% of the students solved the problem directly, and a few others performed 
algebraic manipulations of the given expressions.  A few responses appeared as though they 
were to a multiple-choice question, with a circle or check mark next to one expression. One 
student wrote that the first response “Needs the pulley!” and circled the second response, 
writing  “This one!!!” A few students mentioned partially remembered results:  “my very 
rusty memory only recalls subtracting from the bottom.”  These responses suggest an 
epistemological stance that is quite different that the problem intends, and students may need 
to have the purpose of this activity framed very explicitly.   

Limiting cases:  Only a handful of students explained using quantitative reasoning from 
the categories described above to evaluate this expression.  As an example of a response that 



we coded as using limiting cases, one student wrote, “No, if m2= 0 kg then this formula 
makes a = 0 m/s2 which is clearly not true.”  

Presence / absence of variables: A very common code reflected responses in which 
explanations referred to the presence or absence of variables: “This could be correct because 
all relevant variables are used.”  For the first expression, most students gave explanations that 
referred to the absence of the mass of the pulley.  A few (~5%) stated that the expression was 
incorrect because of the absence of the pulley mass M, but the more common response was to 
state (correctly) that the expression would be correct if the mass of the pulley is negligible.  

Physical mechanism: Several student responses described a physical mechanism for the 
motion.  A smaller group reflected an attempt to reconcile the mathematical form of the 
expression with this sense of physical mechanism.  The most obvious examples of this were 
students who referred explicitly to the presence or absence of a term with the difference in 
masses.  These responses included some in which the presence of this term was noted: 
“Correct [first expression]; m2 is countering m1 so m1 is accelerating at a portion of g.”  A 
few students gave explanations that reflected similar reasoning but with respect to other 
quantities: “this [second] expression raises the value of acceleration as the mass of the pulley 
increases leading me to believe this is incorrect.” 

Discussion 
This portion of the project is in initial stages, and further research is needed.  Interviews 

focusing on these skills are in progress, including the Evaluate the Expressions task.  We 
offer two tentative observations. 

First, many students entering the MM course do not successfully reason quantitatively 
even when explicitly prompted to do so.  The responses given by some students suggest that 
they do not recognize that the tasks shown require them to step away from solving the 
problem directly or remembering its answer in order to reason whether a solution might be 
correct.  Relatively few students spontaneously examined the expressions for special cases of 
the variables in the problem or related to a sense of physical mechanism.  Traditional 
instruction, focused almost entirely on procedures, does not necessarily lead students to 
develop other quantitative reasoning skills. 

Second, given that physicists value the quantitative skills described, that there is a need 
for tasks that can be used in instruction and assessment.  Redish and Kuo [12] have recently 
written that students “need to learn a component of physics expertise not present in math 
class—tying those formal mathematical tools to physical meaning….We as physics 
instructors must explicitly foster these components of expert physics practice to help students 
succeed in using math in physics.”  Yet the majority of problems in the course text are merely 
mathematical exercises that do not explicitly address these reasoning skills.  

Questions for audience 
Is there existing theoretical or empirical work in RUME that would complement or 

inform this study? 
PER-influenced physics instruction has led to increased emphasis on conceptual 

understanding and sense-making rather than procedural tasks and routine computations.  We 
clearly have a lot to learn from the RUME community regarding the ways that students think 
about mathematical sense-making; what have we overlooked due to our disciplinary filters?  

What are the implications for research and practice in mathematics education? 
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