
Student Conceptions of Integration and Accumulation 
 

Brian Fisher 
Lubbock Christian 

University 
 

Jason Samuels 
City University of  

New York – BMCC 
 

Aaron Wangberg 
Winona State  

University 

Prior research has shown several common student conceptualizations of integration among 
undergraduates. This report focuses on data from a large scale written assessment of students’ 
views of integration and accumulation to categorize student conceptualizations and report 
their prevalence among the undergraduate population. Analysis of these results found four 
categorizations for student descriptions of the definite integral: antiderivative, area, an infinite 
sum of one dimensional pieces, and a limit of approximations.  Similarly, when asked about an 
accumulation function, student responses were grouped into three categorizations:  those 
based on the process of calculating a single definite integral, those based on the result of 
calculating a definite integral, and those based on the relationship between changes in the 
input and output variables of the accumulation function.   
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Difficulties with conceptions involving integration are documented (Bezuidenhout, J. & 
Olivier, A., 2000; Orton, 1983; Rasslan, S. & Tall, D., 2002; Hirst, 2002). Some of these 
difficulties may come from a limited conception of a rate (or derivative) as a quotient 
(Byerley et al., 2012).   

The central conceptions of a definite integral are: procedure of antidifferentiation, area, 
and accumulation. These categories are consistent with those used by Jones (2015 jmb) and 
Hall (2010). Hall also had a “linguistic” category which he noted did not constitute actual 
mathematical understanding, so we exclude it here. 

For conceptions of integral involving antidifferentiation, students have been found to be 
generally competent in executing the procedure of integration (Mahir, 2009; Orton, 1983; 
Grundmeier et al., 2006); however, only a small proportion of students are able to translate to 
the graphical representation and solve when the original problem contains a formula not 
elementary for integrating (e.g. [x]) (Rasslan, S. & Tall, D., 2002; Mahir, 2008). 

The area can be conceived as an infinite collection of lines or limit of narrowing 
rectangles (or trapezoids) (Sealey 2006; Jones 2013; Czarnocha, B., Dubinsky, E., Loch, S., 
Prabhu, V., & Vidakovic, D., 2001). 

Accumulation is an important but less widely understood interpretation (Thompson, 
1994; Thompson & Silverman, 2008; Jones 2015). Tall (1992) called it cumulative growth; 
Thompson (1994) called it accumulation; Jones (2013) called it adding up pieces; Jones 
(2015) called it multiplicative-based summation. We refer to it as rate-based accumulation. 
The element of summing is captured by the word “accumulation” and the fact that each term 
is calculated from the rate is reflected by the phrase “rate-based.” Understanding of this form 
is directly related to the ability to writing the integral for an application problem (Jones, 
2015; Sealey, 2006). 

Understanding in each of these 3 categories might be shallow or deep. For example, 
shallow understanding of antidifferentiation might include only procedural knowledge for 
basic functions (e.g. polynomial, trig, exponential). Deep understanding might include a full 
conception of the Fundamental Theorem of Calculus. A shallow understanding of area might 
include only the nominal notion itself. A deep understanding might allow reasoning about the 
bounds which maximize the integral given the graph of a function (e.g. Bezuidenhout, J. & 



Olivier, A., 2000); it might encompass approximations through Riemann sums as well as 
exact answers from a definite integral. Shallow understanding of rate-based accumulation 
might only include a restatement of the Fundamental Theorem of Calculus. Deep knowledge 
might include the ability to set up integrals for applied problems (as in Sealey 2006) or the 
ability to represent it with the graph of the antiderivative (Tall 1991). 

Our desire with this study is to understand the current landscape of students’ 
conceptualizations of integration in multivariable calculus. Our goal is to ask the question 
“what are the primary conceptualizations of integration and accumulation present among 
students who have completed single variable calculus, and how prevalent are the various 
conceptualizations among this population?” 

 
Theoretical Perspective 

 
In this study we chose to focus on student’s descriptions of integration and accumulation 

rather than examine their ability to give correct or incorrect responses to mathematical 
questions.  This decision is based on our theoretical perspective which stems from Tall and 
Vinner’s (1981) work on concept images and concept definitions.  In short, our primary 
interest is in understanding the mental images, processes and connections that a student 
brings to mind when considering the topics of integration and accumulation, that is, their 
concept image of integration and accumulation.  It is important to keep in mind that students 
involved in our study may possess elements of their concept image that were never uncovered 
by their responses, for this reason we say that we are studying their evoked concept images in 
response to the questions posed to them. 
 

Methodology 
 

The data for this report come from a large scale study involving <fill in> multivariable 
calculus students at <fill in> universities. The. Students in the study were asked to complete a 
collection of open ended written responses on various topics in introductory calculus. The 
current report will focus on student responses the following two questions featuring the 
concept of integration in single variable calculus. 

 

 
 
Student responses were then analyzed using an open coding scheme which preliminary 

results have indicated four categories for responses to question #1 and three categories for 
responses to question #2. 

 
Preliminary Results 

 

Question #1:  Suppose the result of ∫ ௕ݔ݀(ݔ)ݍ
௔  is a real number, k. Explain what 

k means and how it was measured. Sketch any images you have in mind in the 
space below. 

Question #2:  Suppose that a function G is defined: ܩ = ∫ ௧ݔ݀(ݔ)݂
௔ .  Is G a 

function of t or a function of x? Justify your response.  
 



Following are the emerging categories found during our preliminary analysis of student 
responses to questions #1 and #2 above regarding the concept of integral in single variable 
calculus. 

 
Emerging Categories from responses to question #1di 

 
Integral as representing an antiderivative 

Students within this group primarily respond in terms of symbolic representations of 
functions and describe k as the computed result from manipulating those representations. 
Student responses typically omit sketched images or present symbolic representations as the 
‘image’ accompanying the description. 

Example response: “You take the antiderivative of q(x). Once you do that, you substitute 
b for x and a for x and subtract. The difference is k” 

 
Integral as representing an area 

Students within this group primarily describe the integral in terms of area without 
reference to how the area can be computed or interpreted. Accompanying sketches typically 
include the graph of a function with the area underneath the function shaded; however, the 
sketches contain no means of dividing the area into simpler shapes. 

Example response: “k is the area under q(x) between a and b” 

 
Example Sketch 

 
Integral as representing an infinite sum of one-dimensional objects  

Students within this group describe integration as a process of adding together an infinite 
number of infinitely small pieces, often referred to as ‘lines’ or ‘slices.’ Students within this 
group often describe this process as a means of measuring the area underneath the function. 
This category closely resembles the “collapse metaphor” of limit as described in Oehrtman 
(2009).  Sketches accompanying these descriptions often contain either a single 
representative ‘slice’ of the function or an area composed of vertical lines.   

Example response: “The area under the curve, q(x), is equal to some real number, k. k was 
measured by taking an infinite number of slices of the area under the curve.” 

  
Example Sketches 

 
Integral as representing a limit of approximations  

Students within this group describe integration as an approximation process, usually in 
terms of Riemann Sums. The students’ descriptions of the limiting process of these 
approximations can vary widely including descriptions of repeating the approximation 
process indefinitely, doing a single approximation at a very high level of accuracy, or 
creating approximations to meet a desired accuracy as described in Sealey and Oehrtman 



(2007). Like the previous category, students within this group often describe the 
approximation process as a means of measuring the area underneath the function. Sketches 
accompanying these descriptions often reflect the traditional images associated with Riemann 
Sums. 

Example response: “k means area under the curve. It was measured by taking segments of 
the curve and multiplied by the height of the function, thus creating rectangles. This process 
was then repeated by taking a limit and taking smaller and smaller segments each time.” 

 
Example Sketch 

 
Emerging Categories from responses to question #2af 

 
x and t are described by their role while performing integration 

Students within this group focus on the process of computing a single value from 
integrating and the roles of x and t within that process. Students within this group tend to 
describe x as the “variable” involved in the process and t as a “parameter” or “boundary 
value.” For this reason, students within this group respond that x is the variable present and 
argue based on the roles of either x or t rather than in terms of the function G. This may be 
due to a weak understanding of the covariational nature of functions (Carlson et al., 2002) or 
an unreified view of the process of integration (Sfard, 1991) 

Example responses: “G is a function of x. It’s not t because t is just a boundary.” “G is a 
function of x because x is the input.”    

 
x and t are described by their role after performing symbolic integration 

Students within this group tend to speak primarily in terms of the symbolic process of 
integrating; however, unlike the previous group of students, students within this category 
focus their attention on the result of integrating rather than the process of computing the 
integral. Students within this group respond that t is the variable because after using the 
fundamental theorem to integrate, t is substituted back for x to achieve the final answer. 

Example response: “G is a function of t because t will replace the x from f(x) when 
integrating.” 

 
x and t are described by how changes in each variable affect the value of the function, G 

Students within this group emphasize in the input-output nature of the function G and 
respond in terms of how changes in either t or x will result in changes in G. Students within 
this group respond that G is a function of t because changing the value of t changes the 
resulting value of G. 

Example responses: “G is a function of t.  by modifying t, one can change the interval 
over which f(x) is integrated.” “A function of t, since any change in t would change the value 
of G.”

 
 

Discussion 
 

Preliminary results from the analysis of question #1 show that the majority of students 
(67%) describe the definite integral in terms of area and roughly half of the remaining 



students (16%) describe it in terms of an antiderivative. For question #2 the preliminary 
analysis shows that among the students who gave a classifiable response, the majority (54%) 
described x and t in terms of their roles while performing integration with most of the 
remaining students (34%) described x and t in terms of their role after performing symbolic 
integration.   

It is worth noting that these preliminary results indicate that the majority of the students 
in our study evoked conceptualizations of integration and accumulation that fail to emphasize 
the underlying structure of the definite integral. Such conceptualizations could be an 
indication of pseudo-structural thinking (Sfard & Linchevski, 1994) among the students in 
our study. It is interesting that, although a majority of the students responded to question #1 
in terms of the area underneath the function, very few students used area as a means to reason 
about the roles of x and t in question #2, opting instead to reference the symbolic process of 
calculating a definite integral using the fundamental theorem of calculus. This is likely due to 
the increased complexity found in moving from a single definite integral to treating that 
integral as a process in the accumulation function.   

The data for this report is situated within a larger project exploring student learning in 
multivariable calculus. In particular, the authors are interested in exploring the implications 
of these results for teaching and learning in multivariable calculus. For example, we have 
anecdotal evidence that an emphasis on interpreting a single variable integral as an area can 
lead to students interpreting multivariable integrals in terms of surface area or other two 
dimensional quantities. For these reason, we have chosen to focus our audience questions on 
the implications of these results for teaching and learning in multivariable calculus. 

   
Questions for the audience:  

 How do these results impact classroom instruction in multivariable calculus? 
 What affect would you expect multivariable calculus to have on student responses 

to a post-test? 
 What types of multivariable calculus experiences would most likely influence 

students’ evoked images of integration? 
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