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Abstract. In a previous RUME paper, I argued that proof in mathematical practice can 
profitably be viewed as a cluster concept in mathematical practice. I also outlined several 
predictions that we would expect to hold if proof were a cluster concept. In this paper, I 
empirically investigate the viability of some of these predictions. The results of the studies 
confirmed these predictions. In particular, prototypical proofs satisfy all criteria of the 
cluster concept and their validity is agreed upon by most mathematicians. Arguments that 
satisfy only some of the criteria of the cluster concept generate disagreement amongst 
mathematicians with many believing their validity depends upon context. Finally, 
mathematicians do not agree on what the essence of proof is. 
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Mathematics educators agree that an important goal of mathematics education is to 
improve students’ abilities to write proofs. Unfortunately, there is also a consensus that 
mathematics educators do not agree on what a proof is (Balacheff, 2002; Reid & Knipping, 
2010; Weber, 2009). In a previous RUME theoretical report (Weber, 2014), I suggested that 
proof in mathematicians’ practice might profitably be viewed as a cluster concept in the sense 
of Lakoff (1987). Essentially, this means that there may not be a precise definition that 
distinguishes a proof from a non-proof; rather, proof is actually a cluster of characteristics 
where a proof was expected to satisfy most or all of the characteristics but an argument might 
still be a proof if any one or two of the characteristics were not. I claimed that this had the 
following testable hypotheses: 

(i) Mathematicians would believe that an argument that satisfied all characteristics of the 
proof cluster would be regarded as a proof by all mathematicians and would not 
be viewed as controversial. 

(ii) Arguments that satisfied some, but not all, of the characteristics of the proof cluster 
would be viewed as controversial by mathematicians. There would not be a 
consensus on whether these arguments were proofs and such evaluations would be 
context-dependent. 

(iii)  Mathematicians would not agree on what the true essence of proof was. 
In the studies reported in this contributed report, I specifically test whether these hypotheses 
were true. 

Theoretical perspective 

The goal of this paper is to test the viability of the theoretical perspective that proof is a 
cluster concept. I begin by briefly summarizing the arguments from Weber (2014). I start 
with the presumption made by many mathematics educators: we want our definition of proof 
to be descriptive and align with mathematical practice1. That is, the arguments that we define 
to be proofs must include the proofs that mathematicians actually read and write. As 

                                                
1 A mathematics educator need not adopt this presumption (c.f., Staples, Thanheiser, & Bartlo, 2012). This 
article offers consequences for those who accept the presumption that our delineation of proof should be 
accountable to mathematicians’ practice, which I believe constitutes the majority of mathematics educators who 
are studying proof. 



educators, we are not satisfied with define proofs as types of formal derivations that would 
exclude nearly all of the proofs in the published literature (CadwalladerOlsker, 2011). As 
Lakoff (1987) observed, when we try to define categories such as proof, we naturally try to 
list a set of properties that all proofs satisfy. However, Lakoff also argued that most real 
world concepts and many scientific ones cannot be defined in this way. In Weber (2014), I 
present arguments for why proof is an example of a concept that cannot be defined by 
properties that all proofs satisfy. One alternative that Lakoff (1987) suggested is that some 
concepts are cluster concepts which occurs when as “a number of cognitive models combine 
to form a complex cluster that is psychologically more basic than the models taken 
individually” (p. 74). 

I suggested that proof might be a cluster concept with six components: (i) a proof is a 
convincing argument; (ii) a proof is a perspicuous argument; (iii) a proof is deductive and 
non-ampliative; (iv) a proof is sufficiently transparent so that a knowledgeable mathematician 
can fill in any gaps; (v) a proof is written in a representation system with agreed upon 
methods of inference; and (vi) a proof is an argument that is sanctioned by the mathematical 
community. In Weber (2014), I give a more detailed account and rationale for these criteria. I 
also claimed that no single criterion above is sufficient to define proof. For each criterion, we 
can find arguments accepted as proofs by (most) mathematicians that fail to satisfy that 
criterion. (e.g., computer-assisted proofs are not perspicuous and we do not expect a 
knowledgeable mathematician to be able to complete each of the gaps contained within that 
proof). 

If proof can productively be conceptualized as a cluster concept, then this makes three 
predictions. First, an argument that satisfies all elements of the cluster concept should be 
viewed as prototypical and non-controversial. Mathematicians should all agree that such an 
argument is a proof independent of context and expect their colleagues to agree with them. 
Second, if an argument satisfies some but not all elements of the cluster concept, it should be 
viewed as an atypical proof whose validity is questionable. There should be variance in 
mathematicians’ responses and they should be aware of the controversial nature of these 
arguments. Third, proof does not have an “essence”. That is, mathematicians should not agree 
on which criterion in the proof concept is most important.  

Citing philosophers of mathematical practice, in Weber (2014), I argued that each of the 
above hypotheses is plausible. In the current paper, I complement these theoretical arguments 
with an empirical study. As I will discuss in the contributed report, it is somewhat 
problematic to rely on writings about mathematical practice as the claims in the literature are 
often contradictory. Take, for example, the claim that computer-assisted proofs are 
controversial proofs that are ultimately accepted by mathematicians, a claim that has been 
made by philosophers (e.g., Aberdein, 2009) and mathematics educators (e.g., Dreyfus, 
2004). In this contributed report, I provide empirical support for this claim, which might lead 
a skeptic to say that I am merely verifying the obvious. Hence, it is important to note that 
there are philosophers and mathematicians who write about computer-assisted proofs as 
being uncontroversial, arguing that they are clearly epistemologically on par with more 
conventional proofs (Fallis, 1996; Montano, 2012) and even that debates about their validity 
are “anachronistic” as this issue has been decided years ago (Fallis, 1996). On the other side, 
there are those who claim that computer-assisted proofs- in spite of being undeniably correct- 
are not recognized as proofs by the mathematical community (Rota, 1997) and others who 
believe that computer-assisted proofs are fundamentally unreliable for obtaining conviction 
(Jean-Pierre Serre; as cited in Raussen & Skau, 2004). With the exception of Serre, each of 
the authors cited in this paragraph used their assumptions about computer-assisted proofs as 
starting points to deduce strong conclusions about mathematical practice; they cannot all be 



right. The main point here is that citing philosophers and mathematicians to justify empirical 
claims about mathematical practice is problematic as there is internal disagreement between 
the groups; by carefully choosing who is cited, a researcher can find grounds to justify both a 
strong claim, its negation, and qualified version of that claim2.  
 
Methods 

Participants. These studies are comprised of two internet-based survey in which 
mathematicians were asked to evaluate the validity of five purported proofs. The rationale, 
validity, and methodolgoy of using the internet to obtain a large sample of mathematicians 
has been discussed elsewhere (Inglis & Mejia-Ramos, 2009; Lai, Weber, & Mejia-Ramos, 
2012) and is not discussed in detail here for the sake of brevity. For the first study, e-mails 
were sent to the secretaries at the mathematics departments at 25 large state universities in the 
Great Britain. In these e-mails, the secretaries were asked to forward a request to participate 
in the study with a link to the study’s website to the faculty members of their department. 
Through this process, 95 mathematicians agreed to participate in the study and completed the 
survey. For the second study, the same process was completed with 25 large state universities 
in the United States, yielding a total of 110 mathematician participants 

Procedure. In the first study, which I will call the proof evaluation survey, participants 
were told that they would be asked to make validity judgments on five mathematical 
arguments from number theory.  The participants were told that the focus of the study was on 
the type of reasoning within the argument and that no attempt was being made to deceive 
them. They were then told that each proof was published, each sentence in the argument was 
true, and each calculation was carried out correctly. These provisions were put in place 
because my previous research has shown that validating proofs in number theory can be a 
time-consuming process for those who did not specialize in that area (Weber, 2008), which 
would limit the number of mathematicians who would invest the time to complete this 
survey. Further, I wanted to avoid generating disagreement amongst mathematicians due to 
performance errors (c.f., Inglis et al, 2013)-- that is, I did not want mathematicians to disagree 
on whether a proof was valid because some mistakenly thought a true statement was false. I 
was interested in the types of reasoning mathematicians considered valid in a proof rather 
than their evaluations of particular arguments. 

The participants were then shown five arguments in a randomized order and told the 
publication source from where the argument came. The five arguments were: 

• Prototypical Proof 1 (PP1): A conventional proof that “The nth prime pn satisfies 
pn ≤ 2^(2n-1) for all n≥1” taken from Jones and Jones (1998) Elementary Number 
Theory textbook that was published by Springer. 

• Prototypical Proof 1 (PP2): A conventional proof that, “if n is a number of the 
form 6k-1, then n is not perfect” by Holdener (2002) that appeared in the 
American Mathematical Monthly. 

• Empirical Proof (EP): An empirical argument to support “if n is an odd integer, 
then n2 is an odd integer” based on verifying the claim for n = 1, 3, and 5. The 
participants were told this appeared in Weber (2003)3.  

                                                
2 To be clear, quantitative studies are certainly not without their limitations as well. The point is that it is better 
to have a good theoretical argument and quantitative evidence to support it. This is especially true in the case of 
investigating mathematical practice, where the leading theoretical experts do not agree about factual claims 
about what arguments mathematicians accept. 
3 The argument did appear, but as a common type of invalid student proof. However, based on recent studies 
(Iannone & Inglis, 2010; Weber, 2010), I no longer think these proofs are that common amongst mathematics 
majors in proof-based courses. 



• Visual Proof (VP): A visual proof of the claim that “if n is an odd integer, then n2 
is congruent to 1 (mod 8)” by Nelsen (2008) that appeared in Math Horizons. 

• Computer Assisted Proof (CAP): A modification of a computer-generated proof 
that  given by Adamchik and Wagon 
(1996) in the American Mathematical Monthly. 

After each proof was presented, participants were asked to make four judgments: 
• On a scale of 1-10, how typical was the reasoning used in this proof of the proofs 

that they read and write?  
• In their estimation, was this argument a valid proof? (yes/no) 
• What percentage of mathematicians did they think would agree with their 

judgment? (>90%, 71-90%, 51-70%, <50%) 
• For a more nuanced judgment on validity, did they think that: (i) The proof was 

valid in nearly all mathematical contexts, (ii) I think the proof is valid but there 
are some mathematical contexts in which it would be invalid, (iii) I think the proof 
is invalid, but there are some mathematical contexts in which it would be valid, 
and (iv) The proof would be invalid in nearly all mathematical contexts. 

The prediction is that the two conventional proofs, which satisfied all the criteria in the 
cluster concept, would not be controversial. They would be regarded as prototypical proofs 
(scoring high on the first judgment), widely recognized as valid (most participants would 
answer “yes” to the second judgment) independent of context (most participants would 
answer (i) for the fourth judgment), and most would believe that the mathematical 
community would agree with them (most participants would answer >90% on the third 
judgment). Likewise, the empirical argument that satisfies none of the criteria of cluster 
concept would also not be controversial. Most participants would say this was not a proof, 
independent of context, and would expect their colleagues to agree. 

The visual proof and computer-generated proof satisfy some, but not all, criteria of the 
cluster concept. Visual proofs are not written in a conventional representation system and 
computer-generated proofs are not perspicuous and contain gaps that could not be necessarily 
filled in by a knowledgeable mathematician. Hence the prediction is that these proofs would 
be controversial. Mathematicians would find these to be atypical of the proofs that they read 
(scoring low on the first judgment), would disagree on their validity (there would be a 
significant percentage of participants who answered yes to the second judgment but also a 
significant percentage who answered no), would be aware that there was disagreement (most 
participants would not answer >90% on the third judgment), and would think the validity of 
the proof was contextual (most participants would answer (ii) or (iii) for the third question). 

In the second survey, which I call the proof essence survey, participants were asked what 
they believed the essence of a proof was and were given nine options to choose from: 

1. A proof provides a mathematician with certainty that a theorem is true 
2. A proof provides a mathematician with a high degree of confidence that a theorem is 

true 
3. A proof is a deductive argument with each step being a logical consequence from 

previous steps 
4. A proof is a blueprint from which a mathematician could write a complete formal 

proof if he or she desired 
5. A proof, in principle, can be translated into a formal argument in an axiomatized 

theory 
6. A proof explains why a theorem is true 
7. A proof convinces a particular mathematical community that a result is true 



8. None of the above captures the essence of proof 
9. There is no single essence of proof 
If proof is a cluster concept, then we would predict that there is no single criterion that 

captures the essence of proof. Hence, we would not expect the majority of participants to 
choose any one of these responses. 

Results 
 Mean 

Typicality 
Validity Judgment Anticipated Level of Agreement  

Proof Rating Valid Invalid 91-100% 71-90% 51-70% 0-50% 
PP1 7.4 99% 1% 90% 9% 1% 0% 
PP2 6.8 98% 2% 78% 20% 2% 0% 
VP 2.6 62% 38% 14% 46% 33% 7% 
CAP 2.7 39% 61% 10% 41% 37% 12% 
EP 1.6 0% 100% 92% 0% 1% 6% 

Table 1. Participants’ judgments on the validity of the five proofs that they read 
 

Proof Valid proof in nearly all 
contexts 

Valid proof but invalid 
in some contexts 

Invalid proof but valid in 
some contexts 

Invalid proof in nearly 
all contexts 

PP1 94% 5% 1% 0% 
PP2 79% 20% 0% 1% 
VP 21% 33% 40% 6% 
CAP 10% 33% 42% 15% 
EP 1% 1% 3% 95% 

Table 2. Participants’ judgment on the more fine-grained question on utility 
 
The results of the proof evaluation survey are presented in Tables 1 and 2. The results of 

the study confirmed the predictions. For PP1 and PP2, the large majority of participants 
claimed the arguments were valid, valid in nearly all mathematical contexts, and thought 
most of their peers (>90%) would agree with them. The median score for how representative 
these proofs were of what they actually read and wrote was about seven. For VP and CAP, 
there was substantial disagreement amongst the participants, the participants were mostly 
aware that at least 10% of their colleagues would disagree with them, and the majority 
thought the validity of the proof depended on context. 

For the Essence phase of the study, no participant chose “none of the above” and 11% 
chose 9, that there was no single essence of proof. No choice gathered the majority of the 
participants; the fourth choice (that proof was a blueprint where a knowledgeable 
mathematician could fill in every gap) was the most popular, chosen by 25% of the 
participants, and the first choice (that proof provided certainty) being chosen by 22% of the 
participants. Every option aside from 8 (none of the above) was chosen by at least three 
participants.  

Discussion and significance 

The proof evaluation phase of the study 
 

There are philosophers and mathematics educators who claim that there is a very high rate 
of agreement amongst mathematicians as to whether a particular argument is a proof or not 
(e.g., Azzouni, 2004; Selden & Selden, 2003). However, there are also philosophers and 
mathematics educators who challenge this claim (e.g., Aberdein, 2009; Auslander, 2008; 
Dreyfus, 2004; Inglis et al., 2013; Rav, 2007; Weber, Inglis, & Mejia-Ramos, 2014). The data 
presented here offer a potential approach to resolve this discrepancy. For typical proofs, 
mathematicians may indeed usually agree on their validity. Disagreements may arise due to 
performance errors (e.g., a reviewer overlooks a flaw in the proof), but this could presumably 
be resolved in a conversation between mathematicians, as Selden and Selden (2003) 



suggested. The disagreements do not concern the legitimacy of the type of reasoning being 
used. Hence, those who highlight mathematicians’ “unusual degree of agreement about the 
correctness of arguments” (Selden & Selden, 2003, p. 7) seem to be correct in the following 
sense: for the proofs that mathematicians typically encounter in their working lives, it may 
well be the case that there is usually a high level of agreement amongst mathematicians on 
the validity of these proofs.  

However, for atypical proofs, arguments that satisfy some but not all criteria of the cluster 
concept, disagreement on validity is common and mathematicians are aware of it. 
Importantly, the majority may think validity judgments about these proofs are contextual. (A 
good follow-up study would be to interview individual mathematicians to get a better sense 
of what these contexts are). Hence, those who challenge the claim that mathematicians share 
the same standard of proof are right to note that there are classes of proofs where this is not 
so.  

The finding about the validity of atypical proofs being contextual has a useful 
consequence for methodological design. In a sense, we can say that asking someone whether 
a visual argument is a proof is not a well-formed question. The majority of the participants in 
this study felt the answer depended on mathematical context. In general, asking individuals to 
judge whether an imperfect argument without a fatal flaw is a proof to make a binary 
judgment on the argument’s validity might be asking an artificial and unreasonable question. 
It might be better to ask in what sense is the argument a proof (and in what sense is it not) 
and in what contexts the argument would be acceptable (and in what contexts would it not be 
acceptable). 

The essence phase of the study 
 
The data on the proof essence phase of the study offer a strong challenge to a researcher 

who wants to describe what proof essentially is to mathematicians. For instance, take the 
claim that proof is, at its essence, a convincing argument- an assertion made by numerous 
mathematics educators (e.g., Balacheff, 1987; Harel & Sowder, 1998; Mason, Burton, & 
Stacey, 1982) and some philosophers (e.g., Davis & Hersh, 1981). If this were so, we might 
expect that for the essence question, most participants in this study would have chosen option 
1 (proofs provide a mathematician with certainty), 2 (proofs provide a mathematician with a 
high degree of confidence), or 7 (a proof convinces a mathematical community). Perhaps 
some participants might have chosen 9 (there is no single essence of proof) on the grounds 
that a proof needed to be convincing and something else. Yet if we add the number of 
participants who chose 1, 2, 7, or 9, we only reach 41%. It seems difficult to claim that 
mathematicians essentially view proof as a convincing argument if the majority of 
mathematicians chose another facet of proof that proof is essentially about (in particular, 
choices 3, 4, 5, and 6). To avoid misinterpretation, no single study can be offered as a 
definitive rebuttal to the claim that many mathematicians view proof as something other than 
a convincing argument. What I do contend is that those who want to claim that proof is 
essentially about conviction (or explanation or anything else) should at least be held to 
account for these empirical findings. 

This offers a practical suggestion for teachers or researchers who desires that proof in 
their classrooms to be epistemologically consistent with mathematicians’ practice. They 
should not take conviction, explanation, social acceptance, or deduction as the primary 
criteria for what constitutes a proof. Different mathematicians place different weight on the 
importance of each of these. My contention is that good proofs satisfy all of these roles and I 
would encourage classroom research to reflect that. 
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