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As part of a project aimed at designing and validating three proof comprehension tests for 
theorems presented in a transition-to-proof course, we asked between 150 and 200 
undergraduate students in several sections of one of these courses to take long versions (20 
to 21 multiple-choice questions) of these tests. While analysis of these data is ongoing, we 
discuss preliminary findings about psychometric properties of these tests and student 
performance on these proof comprehension measures. 
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Most advanced mathematics courses are taught in a “definition-theorem-proof” format, 
where textbooks and lecturers present the definitions of new concepts and then prove 
theorems about those concepts (Weber, 2004; see also Dreyfus, 1991; Mills, 2011). 
Underlying this widely used pedagogical format is the assumption that mathematics majors 
can learn a great deal by studying the proofs that their professors present. Yet as 
mathematicians and mathematics educators observe, students’ understandings of the proofs 
that they read are rarely assessed in a meaningful way (e.g., Conradie & Frith, 2000; Cowen, 
1991). This is due, in great part, to the dearth of valid assessments that measure proof 
comprehension (cf., Cowen, 1991; Weber, 2012). 

In a recent project we are developing proof comprehension tests for three theorems that 
are commonly presented in undergraduate transition-to-proof courses. Our aim is to validate 
these multiple-choice tests and make them available for others to use in their own courses and 
research projects. 
 

Literature Review 

Prior to our work in the area, we are not aware of the existence of systematic ways of 
assessing students’ comprehensions of proof in undergraduate mathematics courses. 
However, there have been three important contributions in this area in the research literature. 
Conradie and Frith (2000) directly addressed the issue of proof comprehension tests in 
undergraduate mathematics. In addition to stressing their importance, these researchers 
provided comprehension tests for two different proofs. While their items were intriguing and 
called mathematics educators’ attention to an underrepresented area of research, we note that 
these tests seemed to be created in a somewhat ad hoc manner, and it was unclear how these 
items were generated or what specific skills or understanding each item was designed to 
assess. Yang and Lin (2008) developed a model of reading comprehension for geometry 
proofs (RCGP) that consisted of four levels of understanding: surface (i.e., understanding the 
meaning of terms and statements), recognizing the elements (i.e., knowing whether a 
statement was an axiom, assumption, definition, or deduction), chaining elements (i.e., seeing 
how new statements are deduced from previous ones), and encapsulation (i.e., viewing the 
proof as a whole to comprehend the higher level ideas in the proof). Yang and Lin developed 
specific assessment items to assess the first three levels of understanding of a given proof, but 
notably did not attempt to assess how well students encapsulated the proof. 

While some of the ideas in Yang and Lin’s model are pertinent to proofs at the 
undergraduate level, we argue that the model by itself is not sufficient to probe students’ 
understanding of a proof in an advanced mathematics class. For instance, Yang and Lin did 



not attempt to assess if students achieved the highest level of understanding in their model, 
which consisted of viewing the proof as a whole to comprehend its higher-level ideas. While 
this type of understanding might not be a central concern for a high school geometry teacher, 
we contend that skills such as being able to summarize a proof or being able to flexibly apply 
the methods of a proof to prove a new theorem are crucial skills for students in advanced 
mathematics classes. Further, there are also logical nuances that are present in some 
undergraduate proofs that are not accounted for in Yang and Lin’s assessment model, such as 
how should proof by contradiction or proof by cases be understood. From Yang and Lin’s 
perspective, this is not important as such proofs are rare in high school geometry classes, but 
they are common in undergraduate mathematics classes. 

To address this limitation, Mejia-Ramos et al. (2012) built upon Yang and Lin’s model to 
develop an assessment model for proof comprehension that is more suitable to the context of 
undergraduate mathematics. The components of their assessment model can be separated into 
two groups. The first group concerns local understandings of the proof, meaning that these 
questions can be answered by focusing on a small number of statements within the proof. In 
general, these questions would be concerned with describing the logical structure or 
evaluating the validity of the proof, and are adaptations of the first three components of Yang 
and Lin’s (2008) model for geometry proofs. These local types of assessment items are: 

• Meaning of terms and statements: items of this type measure students’ 
understanding of key terms and statements in the proof.  

• Logical status of statements and proof framework: these questions assess students’ 
knowledge of the logical status of statements in the proof and the logical 
relationship between these statements and the statement being proven.  

• Justification of claims: these items address students’ comprehension of how each 
assertion in the proof follows from previous statements in the proof and other 
proven or assumed statements.  

The second group concerns holistic understandings of the proof. In contrast with local 
understandings, one would not be able to answer questions about holistic understandings of a 
proof by focusing on a small number of statements in a proof, but would have to be addressed 
by inferring the ideas or methods that motivated the proof in its entirety. The holistic 
understandings relate to the “encapsulation” level in Yang and Lin’s (2008) model, and 
include four types of assessment items that address students’ understanding of the proof as a 
whole:  

• Summarizing via high-level ideas: these items measure students’ grasp of the main 
idea of the proof and its overarching approach.  

• Identifying the modular structure: items of this type address students’ 
comprehension of the proof in terms of its main components/modules and the 
logical relationship between them.  

• Transferring the general ideas or methods to another context: these questions 
assess students’ ability to adapt the ideas and procedures of the proof to solve 
other proving tasks.  

• Illustrating with examples: items of this type measure students’ understanding of 
the proof in terms of its relationship to specific examples.  

Lecturers, textbook writers and researchers can use Mejia-Ramos et al.’s (2012) model to 
generate open-ended items that measure students proof comprehension along dimensions that 
are valued by both mathematicians and mathematics educators. However, this way of using 
the model has two shortcomings. First, these open-ended questions can be time consuming to 
generate and grade, which may limit their utility in teaching and research situations involving 
a large number of test takers. Second, the validity and reliability of these questions has yet to 



be verified. The purpose of our current project is to address both shortcomings by designing 
and validating multiple-choice proof comprehension tests for three proofs from a transition-
to-proof course. 

Methods 

Materials 
We have developed comprehension tests for proofs of the following three theorems: 

• Theorem 1: The set of prime numbers is infinite. 
• Theorem 2: Every third Fibonacci number is even. That is, if we define the nth 

Fibonacci number (denoted by fn ) in the usual way, then f3k  is even for every 
k ∈ N . 

• Theorem 3: The open interval 0,1( )  is uncountable. 
Theorem 1 is a central theorem in transition-to-proof courses, being one of the first 

indirect proofs that students encounter. The proof is also often misunderstood by students, as 
there is frequently confusion as to whether the constant generated in this proof is a prime 
number (e.g., Hazzan & Zazkis, 2003). The proof of Theorem 2 is a typical example of the 
kind of proofs by induction presented in transition-to-proof courses. Proofs by induction are a 
central concept in these courses and is notoriously difficult for students (e.g., Dubinsky, 
1987, 1989; Harel, 2001). Theorem 3 is a more advanced theorem with a more sophisticated 
proof method that is usually covered in transition-to-proof courses. 

In order to generate the current version of the multiple-choice, proof comprehension tests, 
we followed the following procedure: 

1. For each one of the three proofs, we first generated open-ended questions of each 
type of assessment item in Mejia-Ramos et al.’s (2012) model. 

2. We then conducted task-based interviews with 12 mathematics majors who had 
recently completed a transition-to-proof course. These participants were asked to 
read the three proofs and answer the open-ended questions.  

3. We observed the correct answers that the participants provided as well as common 
incorrect answers. These data were used as a basis to generate a larger set of 
multiple-choice questions, with at least one question for every dimension of 
understanding in Mejia-Ramos et al.’s (2012) proof assessment model. 

4. We then sought feedback from mathematicians at our institution and an advisory 
board (which included a prominent mathematician and a leading researcher on 
proof comprehension a the undergraduate level) regarding the accuracy and 
appropriateness of our items. 

5. Finally, we piloted these multiple-choice items with 12 mathematics majors to 
make sure our items had appropriate wording and choices. 

To illustrate the type of items in our proof comprehension tests consider the proof used 
for Theorem 1:  

Suppose the set of primes is finite. Let p1, p2, p3,…, pk  be all those primes with 
p1 < p2 < p3 << pk . Let n be one more than the product of all of them. That is, 
n = p1 ⋅ p2 ⋅ p3pk +1 . Then n is a natural number greater than 1, so n has a prime 
divisor q. Since q is prime, q >1 . Since q is prime and p1, p2, p3,…, pk  are all the 
primes, q is one of the pi  in the list. Thus, q divides the product p1 ⋅ p2 ⋅ p3pk . Since 
q divides n, q divides the difference n− p1 ⋅ p2 ⋅ p3pk . But this difference is 1, so 
q =1 . From the contradiction q >1  and q =1 , we conclude that the assumption that 
the set of primes is finite is false. Therefore, the set of primes is infinite. 



Item type Open-ended items Multiple-choice items 
Meaning of 
terms and 
statements 

1. Please give an example of a 
finite set and explain why it 
is finite. 

2. Please give an example of a 
set that is infinite and 
explain why it is infinite. 

Which of the following are examples of 
finite sets? Please select all that apply. 
a) The set with the following elements: 1, 

2, and 3. 
b) The set of real numbers between -2 an 2 
c) The set of all fractions 1r  where r is a 

natural number. 
d) The set of integers greater than 4.5 and 

smaller than 9999. 
Justification 
of claims 

1. Why is it valid to conclude 
that n is a natural number? 

2. Why does n have to have a 
prime divisor? 

3. Why exactly can one 
conclude that if q is prime, 
then q >1? 

In the proof, why is it valid to conclude 
that n is a natural number? Please select 
the best option. 
a) Because the product and sum of natural 

numbers is a natural number. 
b) Because n is greater than 0. 
c) Because 1, p1, p2,…, pk  are all integers. 
d) Because it is a given in the proof that n 

is a natural number. 
Summarizing 
via high-level 
ideas 

1. Summarize in your own 
words the main idea of this 
proof. 

2. What do you think are the 
key steps of the proof? 

3. Give a three-sentence 
description of how the 
proof established the 
theorem. 

Which of the following options best 
summarizes the main idea of this proof? 1 
a) The main idea of the proof is to show 

that if the set of primes were finite, one 
could find a formula for a new prime 
number that is not in that finite set, 
contradicting the assumption. 

b) The main idea of the proof is to assume 
that the set of prime numbers is finite 
and to construct a natural number that 
has a prime divisor equal to 1, which is 
impossible. 

Transferring 
the general 
ideas or 
methods to 
another 
context 

1. In the proof, we define 
n = p1 ⋅ p2pk +1 . Would 
the proof still work if we 
instead defined 
n = p1 ⋅ p2pk +31? Why? 

2. Define the set 
Sk = 2,3, 4,…,k{ }  for any 
k > 2 . Using the method of 
this proof, show that for 
any k > 2 , there exists a 
natural number greater than 
1 that is not divisible by 
any element in Sk . 

In the proof, we define n = p1 ⋅ p2pk +1
Would the proof still work if we instead 
defined n = p1 ⋅ p2pk +31? Please select 
the best option. 
a) Yes, because n will still be a prime 

number, so the contradiction will still 
hold. 

b) Yes, because 31 is a prime number, 
which means that q must still be 1. 

c) No, because this definition of n would 
not be necessarily prime. 

d) No, because in this case q could be 31, 
which does not lead to a contradiction. 

Table 1. Examples of items used in the proof comprehension tests for Theorem 1.  

                                                
1 This item has two other foils that did not fit in the table/proposal. 



Table 1 contains examples of open-ended and multiple-choice versions of some of the 
different types of items used in the test for this proof. The multiple-choice tests generated for 
theorems 1 and 2 contained 20 items each, while the test for Theorem 3 contained 21 
questions. 
Participants and procedure 

The proof comprehension tests were distributed to students in several sections of an 
undergraduate transition-to-proof course in a large state university. Each of the five 
participating instructors allocated 40 minutes of class to distribute each test. On the day each 
test was distributed, students in the course received a packet that contained the theorem and 
its proof, instructions on the different types of items in the test, and all the multiple-choice 
questions (the order of the items in each section of the test was randomized). The test for 
Theorem 1 was distributed after instructors had introduced proofs by contradiction in class 
(approximately a third of the way into the term), the test for Theorem 2 was distributed once 
instructors had discussed the principle of mathematical induction (usually by the middle of 
the term), and the test for Theorem 3 was distributed by the end of term, after instructors had 
discussed the notion of the cardinality of sets. 

A total of 201 students took the proof comprehension test for Theorem 1, 192 students 
took the test for Theorem 2, and 152 students took the test for Theorem 3. 2 
 

Preliminary Results 

Analysis of this data set is on going. However, preliminary analyses suggest several 
interesting trends: 

1. There is a strong correlation between students’ performance on any two of the 
three proof comprehension tests, 

2. The tests, even before excluding poor or uninformative items, show a high internal 
consistency.  

Taken together, these results suggest that proof comprehension can be a meaningful 
single-dimensional construct. Ongoing analyses will explore the extent that this is the case. 
We will also discuss items that the large majority of students answered correctly and the 
items that most students answered incorrectly, which can provide some much needed baseline 
data on how well mathematics majors understand proof in a transition-to-proof course. 
 

Questions for the audience 

1. Do you have any suggestions for further analysis of the data? 
2. How would you recommend that we disseminate these tests to mathematicians? 
3. How might we improve the test design process for future iterations of these types 

of studies? 

                                                
2 The decreasing number of participating students was not only due to the regular reduction 
of class size as the term progresses. One of the participating instructors did not reach the 
topic of cardinality in class, which meant that we could not distribute the test for Theorem 3 
in the two sections led by this instructor. 
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