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Derivatives are an important concept in undergraduate mathematics and across the STEM fields. 
There have been many studies on student understanding of derivatives, from graphing 
derivatives to applying them in different scientific areas. However, there is little research on how 
students construct an understanding of multivariable calculus from their understanding of single 
variable calculus. This poster uses APOS theory to hypothesize the mental reflections and 
constructions students need to make in order to solve and interpret an implicit differentiation 
problem and examine the connections to multivariable calculus. Implicit differentiation is often 
the first time students are introduced to the notion of a function defined by two dependent 
variables, a concept vital in multivariable calculus. Investigating how students initially reconcile 
this new idea of two variable functions can provide knowledge of how students think about 
multivariable calculus.
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Introduction and Relation to Literature
  Student understanding of single variable calculus has been well researched (e.g. Bardini, 
Pierce, & Stacey, 2004; Habre & Abboud, 2006; Lauten, Graham, & Ferrini-Mundy, 1994; 
Simonsen, 1995; Tall, 1985; Thompson & Silverman, 2008; White & Mitchelmore, 1996; 
Williams, 1991). Comparatively, there are relatively few investigations of student understanding 
of multivariable calculus (e.g. Dorko & Weber, 2014; Fisher, 2008; Kerrigan, 2015; Martínez-
Planell & Gaisman, 2012; McGee & Moore-Russo, 2014). In particular, while there is an 
abundance of research on the topic of single variable differentiation (García, Llinares, & 
Sánchez-Matamoros, 2011; Habre & Abboud, 2006; Haciomeroglu, Aspinwall, & Presmeg, 
2010; Orhun, 2012; Santos & Thomas, 2001), there is very little knowledge of student 
understanding of multivariable differentiation (Martínez-Planell, Gaisman & McGee, 2015; 
McGee & Moore-Russo, 2014; Tall, 1992). Similarly, many researchers have explicitly 
investigated the mental generalizations and reflections students need to construct the concept of 
differentiation (Asiala, Cottrill, Dubinsky, & Schwingendorf, 1997; Clark et al., 1997; García et 
al., 2011). However, there has been little work done on what reflections and mental constructions 
students need to make in order to understand implicit differentiation. This poster is theoretical in 
nature and focuses, through APOS theory, on the connections between the mental reflections and 
constructions need for implicit differentiation and those needed for multivariable calculus.

APOS Theory
 APOS theory emerged from Piaget’s notion reflection abstration and is a theoretical 
framework for investigating mental construction of mathematical objects (Dubinsky & 
McDonald, 2001). There have been several addititions the the original action, process, object, 



schema stages in the theory, including procept and procedural process. The term procept refers 
to a duality of having both a process and object understanding and procedural process refers to 
when a student can mentally run through an action and has interiorized it but may not yet have a 
deeper conceptual understanding of the process. In APOS theory, a genetic decomposition is a 
hypothetical model of mental constructions needed to learn a specific mathematical concept 
(Arnon, 2014). This poster will exhibit of a genetic decomposition for implicit differentiation and 
examine the connections between the mental actions/reflections students make in implicit 
differentiation which may be useful later in multivariable calculus. This linking broadens the 
current ways researchers have been looking at the connections between single- and multivariable 
calculus. 

Discussion
 There are several key reflections and connections that students must make in solving an 
implicit differentiation problem that similarities to those made in multivariable settings. Due to 
space limitations, I provide two examples; the poster will contain a complete genetic 
decomposition..
 The first reflection students must make in solving implicit differentiation problems is to 
identify an implicitly defined function. To identify that a function cannot be explicitly expressed 
in terms of a single variable requires students to reorganize their notion for function. Students 
often think of functions as a variable set equal to an expression, such as y=2x+7 (Thompson, 
2013). However, an implicitly defined function it is dependent on both variables as opposed to 
one. This is an essential concept in the multivariable setting because the functions are explicitly 
defined in terms of two variables. A student who has already seen implicit differentiation should 
have at least a process level of understanding of function dependent on two variables. Thus when 
introduced more formally to two variable functions in multivariable calculus, students already 
have a process to reflect on in order to build the concept of multivariable functions. 
 Another key construction students must make in implicit differentiation is taking the 
derivative of y with respect to x, rather than taking the derivative of x with respect to x. The 
methodology for finding the derivative with respect to a single variable when multiple are 
present is different between implicit differentiation and multivariable differentiation, however, 
constructing the concept of looking at the change in one dependent variable with respect to 
another dependent variable is common to both. For instance, to find the derivative with implicit 
differentiation, students must take the derivative of each variable with respect to a single 
variable. This requires several new mental constructions including an encapsulate the process of 
the chain rule to be able to apply as an object in implicit differentiation. However, finding a 
derivative of a multivariable function requires the student to reflection on what variable the 
derivative is being taken with respect to and to treat the other variables as fixed. This does not 
require the same mental structure as implicit differentiation but the main reflection of taking a 
derivative with respect to a single variable when more that one is present is vital to both 
concepts. 

 These are just two examples of mental constructions that students make first in implicit 
differentiation that are vital to those in multivariable calculus. Understanding how student think 
about implicit differentiation and the underlying mental actions needed to construct the concept, 



can not only help implement better instructional methods but also lend insight into how students 
think about multivariable calculus. 
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