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Research on student understanding of definite integrals has revealed an apparent preference 
among students for graphical representations of the definite integral. Since graphical 
representations can potentially be both beneficial and problematic, it is important to 
understand the kinds of graphical images students use in thinking about definite integrals. 
This report uses the construct of “prototype” to investigate how a large sample of students 
depicted definite integrals through the graphical representation. A clear “prototype” group 
of images appeared in the data, as well as related “almost prototype” image groups. 
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Mathematical representations are an essential part of doing mathematics and have been 
studied extensively by mathematics education researchers (e.g., Cuoco & Curcio, 2001).  In 
particular, much attention in the mathematics education literature has been given to the 
graphical representation (e.g., Romberg, Fennema, & Carpenter, 1993). While some have 
advocated for increased visualization in the teaching and learning of mathematics 
(Cunningham, 1991; Eisenberg & Dreyfus, 1991), others have also warned about an 
overreliance on the graphical representation, which may lead to “uncontrollable imagery” 
(Aspinwall, Shaw, & Presmeg, 1997). Since graphical images can potentially be either 
beneficial or problematic, I believe it is crucial to understand how students make use of such 
representations for mathematical concepts. 

This paper is intended to examine the graphical representation in the context of the 
calculus concept of the definite integral. Recently, several researchers have begun analyzing 
how students understand and conceptualize the definite integral (e.g., Jones, 2013; 
Kouropatov & Dreyfus, 2013; Sealey, 2014). From this research has emerged the conclusion 
that students tend to rely heavily on the graphical “area under a curve” interpretation of the 
definite integral over other potential interpretations (Jones, 2015). While there is certainly 
nothing wrong with graphical interpretation of the definite integral, it is important that 
calculus educators have an understanding of the types of graphical images that prevail in 
student thinking, and that we examine possibly inadvertent predilections instructors may have 
in presenting graphical images of definite integrals. In particular, this paper is meant to 
address the questions: (a) What graphical images do students and instructors tend to use to 
depict definite integrals? (b) Are there certain features that are common to these graphical 
images? Answers to these questions may help us begin to understand how certain prevalent 
images might help or hinder student thinking regarding definite integrals. 

 
Prototype images and social construction 

 
This paper uses the notion of “prototypes” (Rosch, 1973), which is built on the idea that 

certain categories seem to have a hierarchical nature to their membership. For example, in the 
category “bird,” people often think of robins as better examples of “bird” than chickens, 
which are themselves better examples than penguins, even though the people understand that 
all three meet the standard scientific definition for “bird” (Lakoff, 1973). Rosch later clarified 
that there is not necessarily a cognitive object that is the prototype (Rosch, 1978), but that 
“prototype” represents a sort of judgment of “best fit” for possible members of a category. 



Prototypes are a useful lens for this study, since its purpose is to identify commonly-used 
graphical depictions of the definite integral among many possible depictions. That is, one 
could think of a range of images that could portray the concept of “definite integral,” and I 
am interested in documenting certain types of graphical images that students seem to use as 
“best depicters” or “default depicters” for the concept of the definite integral. Inherent in this 
is the notion that students would not necessarily believe that other images are not included in 
the idea of “definite integral,” but that certain images may represent it more naturally. 

While prototypes have been studied for individuals, it is clear that there is an across-
individual theme to the research as well. That is, prototypes seem to extend to larger groups 
of people beyond individuals. In certain cases, such as prototypes for focal colors (Kay & 
McDaniel, 1978), there is a biological justification (the photo-receptors in the human eye), 
but for others, such as prototypes of birds, there does not seem to be a biological basis. In 
these cases, I claim that prototypes are social constructions (Ernest, 1994) in that within a 
community of people a certain sense of an “ideal” may emerge for a given category of 
objects, which becomes the dominant shared ideal for that particular category. Again, this is 
not to say that the ideal actually exists, but rather that judgments on prototypicality become 
uniform and homogenized among the community. 

The socially constructed aspect of prototype is central to this paper. As such, this 
investigation is not focused on individual students per se, but rather on socially shared 
prototypical graphical representations of the definite integral. What individual students think 
about definite integrals is, of course, important to this study, since individuals of students, 
instructors, and others make up the school mathematics community. Yet my analysis is 
centered more on similarities that range across students regarding graphical representations 
of definite integrals that are perpetuated through the community. 

 
Origins of the data 

This paper is an outgrowth of a series of studies regarding definite integrals (Jones, 2013, 
2015, under review; Jones & Dorko, 2015). It is important to note that none of the studies 
was originally intended to produce this particular report as an outcome, and each was rather 
centered on trying to explore how students understand and make sense of definite integrals, 
or how instructors teach integration. Through the process of conducting these other studies, 
however, a clear and unmistakable trend began to take shape in the data. In this way, this 
paper admittedly represents an a posteriori investigation into how students from this series of 
studies graphically represented the definite integral. 

The set of data initially used for this paper consists of interview sessions with 23 students 
and surveys administered to 205 students at two higher education institutions with a wide 
range of backgrounds and classrooms experiences. However, 67 of the surveyed students did 
not provide a graphical image in their responses (despite many stating “area under the curve” 
in words), and these 67 students were consequently removed from the data set since the study 
was only focused on the types of graphical images produced by the students. This left 23 
interviewed and 138 surveyed students. The data set also included videotaped classroom 
observations from seven different instructors at these same two institutions. Since the 
interviews and surveys were not all done with the same purpose in mind, and therefore do not 
consist of exactly the same set of prompts and questions, I focused only on the parts of the 
overall data set that were generated from open-ended prompts in which students were asked 
to explain what definite integrals meant, how they understood definite integrals, or how they 
would describe definite integrals to others. Placing such constraints on the data is an attempt 
to capture in this paper how students naturally depicted definite integrals through the 



graphical representation. The following list provides examples of the types of prompts from 
the interviews and surveys that were used in the analysis for the present paper. 

 

 Consider the expression ( )
b

a
f x dx . What does it mean? What does it represent? 

 Let’s say you had a friend in your calculus class who had been sick for the last 
week or so and missed everything your class learned about integrals. How would 
you explain integrals to them? What would you say an integral means? 

 Explain in detail what ( )
b

a
f x dx  means.  If you think of more than one way to 

describe it, please describe it in multiple ways.  Please use words, or draw 
pictures, or write formulas, or anything else you want to explain what it means. 

 
Analysis of the student and instructor data 

The first step in analyzing the data for this study was to simply recognize many 
similarities between graphical representations of the definite integral used among the 161 
students, as I analyzed the data for other purposes. Once these similarities were recognized 
(details are provided in the results section), the images were organized according to 
similarity. That is, images that were very similar to each other were grouped together. This 
organization resulted in a “web” of image clusters, since, for example, one group might differ 
from another in one characteristic, but then also differ from a third group through a separate 
characteristic. Once this organizational web had been created, the frequency of the different 
groups was tabulated, which led to the uncovering of one particular image group as clearly 
the most common. This image group was also positioned in something approximating the 
“center” of the web. Accordingly, I labelled this group the “prototype” group and identified 
what I considered to be seven key characteristics shared by the images in the group. These 
characteristics were then compared to the images in surrounding “similar” groups. Since 
there were so many other groups of images that were so close in nature to the prototype 
group, I decided to create a secondary label, “almost prototype.” I defined an “almost 
prototype” as an image group that contained all but one of the seven characteristics. 

Once the interview and survey data had been analyzed, I turned my attention to the 
videotaped classroom observations I had from seven instructors at two higher education 
institutions. All of these instructors had had their first two hour-long introductory lesson on 
integration observed, with some having had additional observations as well. With the 
“prototype” characteristics and “almost prototype” characteristics defined through the student 
data, I watched the lesson videos to identify any images that the instructors created in the 
classroom that matched either definition. 

 
Results: Student data 

In this section, I first display images from the student data to show examples that were 
included in the “prototype” group (see Figure 1). I then use these example images to highlight 
the seven characteristics I identified regarding the prototype image. Note that, as discussed 
previously, I wish to avoid the false conclusion that there exists one, single “prototype 
image,” in the same way that Rosch (1978) clarified that “prototype” does not mean that an 
actual cognitive object exists that is the prototype. This can be seen in Figure 1, since the 
images are certainly not identical to each other. However, the shared features of the graphical 
images produced by a significant portion of the students indicates that there is clearly some 
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hands to indicate vertical lines at these two points. These results suggest that students may be 
inducted into the usage of these kinds of “best representational fit” images from their calculus 
instructors. While the underlying idea of teachers inducting their students into a shared 
practice is obviously neither new nor revelatory, this portion of the data does reveal, though, 
that it is more than students who share a sense of “prototypicality” of graphical 
representations of definite integrals. It seems to be shared by instructors as well. As such, it 
appears deeply embedded in the calculus education culture. 

 
Discussion 

As discussed in the beginning of this paper, graphical representations play an important 
role in mathematics education, and it is consequently important to understand how graphical 
images are used by students. In this study I have presented a set of seven characteristics that 
define a measure of “prototypicality” for graphical representations of the definite integral that 
seems pervasive in calculus education. Given that this paper, together with past studies 
(Jones, 2015), suggest this type of image may be a “default” image for students (and 
instructors), and since graphical images can potentially override other forms of representation 
(Aspinwall et al., 1997), it is important to understand the ways in which this particular type of 
image may benefit or hinder student thinking in relation to definite integrals. The results of 
this study provide some initial insight into possible benefits and hindrances. 

On the positive side, this type of graphical image is simple, free of visual clutter, and 
contains a function that both increases and decreases and whose slope continuously changes. 
These characteristics may provide individuals with a quick image in which to check the 
plausibility of certain integral properties or to imagine the quantities involved in a real-world-
based integral. Yet, on the negative side, it seems problematic that neither the “inputs” nor 
“outputs” (i.e. x and f(x) ) attain negative values, which may have important ramifications for 
both integral properties and real-world quantities. Also, the fact that the graph has no 
dramatic rises or drops and is always continuous and smooth may oversimplify the nature of 
definite integrals if this kind of image is too dominant in a student’s thinking. 

In stating these possible benefits and hindrances, I wish to be clear that I am not taking 
the position that this default image is bad. However, I am advocating that we, as calculus 
educators, should take a careful look at the types of graphical images we use in connection 
with the definite integral in order to develop a more robust catalogue of images that could 
serve more flexibly in a wider range of situations. Having a single graphical image that is so 
prominently culturally embedded may be problematic for thinking about definite integrals. 
By contrast, if this image were included as just one in a set of easily-accessible graphical 
images, students may possibly develop a more robust understanding of definite integrals. 
Since no alternative images came up with nearly as much frequency in this study, it may be 
that many students might not have such a catalogue of useful images, and may be overlying 
on this one particular type of image. If this is the case, we, as calculus instructors, might wish 
to emphasize a greater variety of graphical images in connection with integrals. 
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