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Abstract 

 

Networks have become increasingly important in studying air pollution, energy use, genetics and 

psychology. These directed graphs also have features that may be useful in modeling student 

learning by answering questions such as the following: How can we determine if one teaching 

approach has better outcomes than a second method?  In this paper we present a framework for 

dividing an approach into subtasks, assigning a numerical value (such as an effect size) to each 

subtask and then combining these values to determine an overall effectiveness rating for the 

original approach. This process allows researchers to investigate potential causes for student 

achievement rather than simple correlations, and can compare the effectiveness of a method for 

various types of students or instructors.    
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Introduction and context 

 

As university faculty face the challenge of teaching a new generation of students, some have 

adopted alternative assessments or a variety of teaching methods to enhance the learning 

experience (Cohen, 1977, Hastings, 2006, Hattie, 2009).  In general, this transition away from 

lecturing has been slow as indicated by a recent survey of 700 calculus instructors in which a 

majority still believes that students learn best from clear and well-prepared lectures (Bressoud, 

2011).  In a related survey of over 700 faculty members who teach introductory physics, an 

impressive 72% had used at least one research-based instructional strategy; however, nearly one-

third of this 72% no longer use any of the strategies (Henderson et al., 2012).  Why do so many 

instructors think and react this way?  Three major reasons are the following:  (1) some may not 

be aware of the existing research supporting new approaches, (2) many are skeptical about the 

effectiveness of newer methods (often based on their own observations), and (3) if a faculty 

member is willing to try a different approach, which choice among the alternatives should she 

choose to produce the greatest impact? 

The focus of this paper is to address reason (3) from above on how to select the best 

approaches.  Issue (1), increasing faculty awareness of current research, is already being 

addressed by several professional organizations.  The National Council of Teachers of 

Mathematics (NCTM) has recently published a survey of over fifty studies related to seven 

principles behind motivational strategies (Middleton & Jansen, 2011) and its 73
rd

 yearbook, 

Motivation and Disposition: Pathways to Learning Mathematics.  The Mathematical Association 

of America (MAA) sponsors the SIGMAA on RUME and strands on teaching and learning 

theory at its national meetings each January and August.  Similarly, the American Mathematical 

Association of Two-Year Colleges (AMATYC) highlights research-based topics in several 

sessions at its annual meeting.  As for issue (2), if faculty members have a way of choosing more 

effective methods, then their skepticism may be diminished due to better classroom results and 

replaced by a lasting commitment to incorporating classroom change. 



Educator Spencer Kagan (Kagan & Kagan, 1998, p. xxii) claims that “the greatest sustained 

change results from the smallest changes in instruction;” however, a challenge related to 

selecting methods is that one general “method” may be accomplished in several ways – each 

with varying levels of success.  For example, suppose two instructors wish to motivate students 

more.  Instructor A chooses to focus on the relevance of mathematics since there seems to be 

general agreement that mathematics, particularly for low-achieving adolescent students, must be 

made more relevant in order to increase student performance (Haylock, 1999).  However, 

Haylock cautions that not all applications are equally motivating to students.  For instance, when 

the teacher states that certain material will be used in the next chapter or in the next course, 

students do not value the content as much as if they see the topic addressing a perceived need.  

However, even though many students see the task of finding the cost to carpet a 12 foot by 18 

foot room when carpet costs $6.75 per square yard as a real problem, it is seen as someone else’s 

problem and not the students’.  Thus, it is not as motivating as if the students see an immediate, 

personal need for the content.  

Similarly, Instructor B desires to motivate students; however, she chooses social interaction 

rather than relevance. At many institutions one of the major areas addressed in student 

evaluations of faculty has been “Student-Instructor Interaction.”  Contact between students and 

faculty, as well as student-student interactions such as reciprocity and cooperation among 

students are two of the seven research-based principles in undergraduate education advocated by 

Chickering and Gamson (1987).  She considers the following passages from (Middleton & 

Jansen, 2011): 

 

Mathematics classrooms’ social dimension can support students’ learning 

of mathematics, particularly when teachers purposefully structure opportunities 

for social needs to converge with academic needs.  All students’ needs for 

relatedness – among them avoiding disapproval, achieving social affiliations, 

demonstrating competence, acquiring social concern, and building shared 

meaning – can become channeled into opportunities to engage in mathematics.  

Teachers’ efforts to support students’ mathematics learning – how they choose 

mathematical tasks, treat students’ errors, evaluate students, reduce 

competition, raise status, and build positive relationships with students – can 

help students meet their needs for relatedness as well.
2 

Integrating all of these practices into your instructional repertoire at once is 

not realistic . . . cycling them gradually into your teaching can help scaffold 

student learning.
3 

 

Observe in these two excerpts that many classroom changes are endorsed; however, are all of 

the revisions listed in the first passage important to the progress of adult learners, and if so, 

which changes should be prioritized (rather than merely cycled through) to achieve the greatest 

impact quickly? 

A current approach for comparing teaching methods is to compute Cohen’s effect size, d.  

This statistic was popularized in the 1960’s by Cohen (Cohen, 1977) and has been used 

extensively to evaluate the effectiveness of many educational approaches on student 

achievement.  This number is computed by finding the difference between two means and then 

dividing this difference by the paired standard deviation (if the data is matched) or by the pooled 

standard deviation (if the sets of data are independent).  Two common scenarios where the effect 



size arises in educational studies are the following where the difference of means in the 

numerator is either (i) the average score on a pre-test subtracted from the average score on a 

post-test, or (ii) the mean score from a test for a control group subtracted from the mean score of 

a treatment group. 

The effect size is easy to compute – even in meta-analyses of several studies with varying 

populations and sample sizes, and it is considered reliable. For instance, John Hattie has 

compiled the value of d from large meta-analyses for almost 150 educational interventions 

including the following (Hattie, 2009): 

 

1) Staying in college residence halls        d = 0.05  

2) Cooperative learning           d = 0.41  

3) Teacher-student relationships         d = 0.72 

4) Providing formative evaluation of programs to teachers  d = 0.90 

 

These results can be interpreted as follows: there seems to be little – if any – change in 

achievement scores for students simply staying in college residence halls, while students who 

participate in cooperative learning experiences with other students see a greater improvement in 

achievement scores.  However, developing relationships between the teacher and students, or 

providing feedback to instructors, appear to be associated with even more growth in student 

achievement. 

Hattie’s work focuses mainly on the effect sizes between various approaches or tasks and the 

final outcome of student scores – without considering which intermediate tasks or student 

responses may be potentially high-impact revisions. 

 

A network model 

 

The theoretical model described in this paper to address the questions of selection and 

priority divides a particular instructional method into a sequence of “subtasks.”  For the rest of 

this paper we will think of a method as a path with the following six steps: 

 

1) instructor 

2) motivational principle 

3) approach 

4) task 

5) student response 

6) outcome 

 

For instance, if an instructor tries to motivate students using the principle of social 

interaction, then one path that might produce higher student scores would include the student-

student interaction approach (rather than the student-instructor interaction approach, for 

example), followed by a classroom task of having pairs of students solve problems where the two 

students take turns explaining how to solve a problem to each other.  This task results in the 

student’s response (or attitude) such as valuing the mathematics or feeling more confident, and 

ultimately leads to an outcome such as student achievement as measured by test scores.  This 

progression is shown by the path in Figure 1. 

 



Instructor → Social interaction → Student-student interaction→ Explain in pairs → Value math 

→ Test score 

 

Figure 1.  A “subtask” path linking the instructor and the student 

 

In reality, a single motivational principle can be addressed with various approaches, one 

approach can be accomplished with several tasks, some tasks may invoke multiple responses (or 

two tasks may produce the same response), and several responses may result in the same 

outcome.  Thus, a network models a more complete picture of the interactions between various 

subtasks.  In Figure 2 a network is shown which includes several (but not all) subtask paths from 

the instructor to the measure of student achievement – the phrases will be referred to as nodes 

and the arrows called arcs.  The paths begin with the instructor choosing one motivational 

principle from three (social interaction, technology, and immediate feedback).  Moving in the 

direction of the existing arcs, the teacher next chooses an approach in the second column that 

aligns with the motivational principle, followed by one of several possible tasks in the third 

column that support that approach.  Each task correlates with at least one student response in the 

fourth column which ultimately correlates with the desired outcome (student achievement).  As 

already mentioned, the network shown is not complete, since there may be other motivational 

principles, approaches, tasks and responses not shown (as illustrated by the node labeled “In-

class Technology” and the arc emanating from it).  

 

 
Figure 2.  A network model linking the instructor and the student 

 

Networks have become increasingly important in studying fields such as air pollution, energy 

use, genetics, psychology, economics, ecosystems, voting behavior, and traffic flow (Roberts, 



1976). These directed graphs also have features that may be useful in modeling student learning.  

As is, the network in Figure 2 shows potential links between tasks and responses or between 

responses and outcomes.  However, how can we determine if Task A results in a larger response 

than Task B, or similarly, when does one response lead to a better outcome than a second 

response?  For instance, in Figure 2, if an instructor wants to provide relatively immediate 

feedback to her students, she could incorporate daily quizzes, online homework or a flipped 

classroom format.  The quizzes and online homework result in just one student response each 

(improvement of skills and persistence, respectively) while the flipped classroom leads to both 

lower anxiety and increased content communication between the students.  One might think that 

addressing two responses is better than focusing on just one in improving student achievement, 

but (Dweck, 2008) and (Reason, 2009) claim that persistence is seen as a necessary pre-requisite 

response to the outcome of student success and in (Perkins-Gough, 2013), Angela Lee 

Duckworth is said to argue that persistence – or “grit” – is a better indicator of success than 

talent or intelligence.  Thus, tasks that develop the single response of persistence may be more 

productive than tasks that result in multiple responses. 

 

Arc weights  

By assigning a numerical value (or weight) to each arc, the intent is that possible 

comparisons could be made between various principles, approaches, tasks, or responses by 

combining the numbers in some way to determine an overall effectiveness.  One value that has 

been used in similar problems in the area of path analysis is the Pearson correlation coefficient, r 

(Simpkins et al., 2006). Thus, the weights in our network could be based on the correlation 

determined by known statistical studies.  For instance, if a strong positive association existed 

between the task of “having students explain problems to each other in pairs” and the response 

where “students value mathematics,” then the correlation coefficient, r, would be close to 1.  

Unfortunately, the correlation coefficient has some limitations.  First it indicates only correlation 

– not causation.  Second, r measures only linear correlation.  Third, there is no natural way to 

combine the correlation coefficients for the arcs on a path to determine a cumulative correlation 

for the entire path. 

A second value that could act as the weight of an arc is the effect size, d, discussed earlier 

with Hattie’s work.  This parameter seems more viable because statistical studies can be done to 

find d for each of the arcs in the network, some overall values of d are already known (for 

example, d = 0.43 for the motivational principle of immediate feedback (Hattie, 2009)), and 

formulas can be developed for combining the d-values along a path to determine an overall effect 

size. 

One last note about the arc weights relates to the values assigned to the arcs between the 

teacher and the motivational principles in the first step in the network.  That is, how does one 

measure why an instructor chooses one principle over another?  A possible method would be to 

use an attitudinal survey to rank the instructor’s value of, comfort with, and training in that 

principle.  It is natural to believe that if one instructor values the use of technology more than a 

second instructor, then the achievement for the students of the first instructor will probably be 

greater than that of the second instructor if both use technology in their classes; however, a 

second question worth studying is the following:  If an instructor does not value (or is 

uncomfortable with) a motivational principle, could the student achievement of her students still 

be higher than if she focused on another principle she valued more? 

 



Conclusion 

 

In an effort to select more effective instructional methods, Hattie and others have used effect 

sizes to relate educational interventions with student achievement.  This process may be able to 

be refined by dividing a teaching approach into subtasks and creating a network model of the 

interactions between these subtasks.  By studying the effect of each subtask and assigning a 

corresponding value to each arc of the network, we may be able to determine if certain classroom 

tasks should be implemented, or if specific student responses should be targeted to attain more 

growth in student achievement.  This theoretical model provides a framework for designing 

statistical studies that determine the arc weights and the opportunity for using methods from 

graph theory to combine these weights into cumulative values that may help in evaluating 

questions in mathematical instruction at the college level.             
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