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Researchers have argued that students can develop foundational meanings for a variety of 
mathematics topics via quantitative and covariational reasoning. We extend this research by 
examining two students’ reasoning that we conjectured created an intellectual need for 
parametric functions. We first describe our theoretical background including different 
conceptions of covariation researchers have found useful when analyzing students’ activities 
constructing and representing relationships between covarying quantities. We then present 
two students’ activities during a teaching experiment in which they constructed and reasoned 
about covarying quantities and highlight aspects of the students’ reasoning that we 
conjecture created an intellectual need for parametric functions. We conclude with 
implications the students’ activities and reasoning have for future research and curriculum 
design. 
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An increasing number of researchers have made contributions to the literature base on 
students’ quantitative and covariational reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 
2002; Carlson, Larsen, & Jacobs, 2001; Castillo-Garsow, 2012; Confrey & Smith, 1995; 
Ellis, 2007; Ellis, Ozgur, Kulow, Williams, & Amidon, 2012; Johnson, 2012a; Thompson, 
1994a, 1994b) with respect both to students’ understandings of various content areas (e.g., 
function classes, rate of change, and the fundamental theorem of calculus) and to their 
enactment of important mental processes (e.g., generalizing, modeling, and problem solving). 
Although maintaining the common intention of understanding students’ covariational 
reasoning, researchers’ treatments of covariation are varied. For instance, Confrey and Smith 
(1994, 1995) approached covariation in terms of reasoning about discrete numerical values, 
finding patterns in these values, and interpolating patterns between them. In contrast, 
Thompson and Saldanha (Saldanha & Thompson, 1998; Thompson, 2011) approached 
covariation in terms of coordinating changes in two continuous magnitudes thus not 
constraining covariation to the availability of numerical data or specified values. 

In this report, we detail results from a teaching experiment in which students conceived of 
simultaneously covarying quantities in ways compatible with Thompson’s and Saldanha’s 
descriptions of covariation. We focus on the students’ actions during the closing sessions of 
the teaching experiment to discuss how the students represented relationships that constituted 
some situation or phenomena using projected magnitudes with an associated coordinate 
system, which Moore and Thompson described as emergent shape thinking (2015, in 
preparation). In characterizing the students’ reasoning, we highlight the parametric nature of 
their reasoning including the extent that students were explicitly aware of the parametric 
nature of their reasoning. We close by highlighting aspects of the students’ reasoning that 
may have supported the students in developing an intellectual need (Harel, 2007) for 
parametric relationships and functions.  

 
Theoretical Background 

 
Researchers who draw from interpretations of Piagetian and radical constructivist theories 

of knowing and learning have developed definitions and frameworks they have found useful 
when describing the mental processes and conceptual structures entailed in reasoning about 



relationships between quantities (Carlson et al., 2002; Johnson, 2012a, 2012b; Moore & 
Thompson, 2015, in preparation; Steffe, 1991; Thompson, 1994a, 2011; Weber, 2012). Of 
importance to this report, Carlson et al. (2002) presented a developmental framework that 
allows for a fine-grained analysis of students’ covariational reasoning. The authors identified 
mental actions students engage in when coordinating covarying quantities including 
coordinating direction of change (quantity A increases as quantity B increases; MA2), 
amounts of change (the change in quantity A decreases as quantity B increases in equal 
successive amounts; MA3), and rates of change (quantity A increases at a decreasing rate 
with respect to quantity B; MA4-5). 

Also of importance to this report, Saldanha and Thompson (1998) described the 
developmental nature of images of covariation, “In early development one coordinates two 
quantities’ values to think of one, then the other, then the first, then the second, and so on. 
Later images of covariation entail understanding time as a continuous quantity, so that, in 
one’s image, the two quantities’ values persist” (p. 298). Extending this description, 
Thompson (2011) provided a first-order model of such an understanding in which an 
individual conceives of a quantity’s value, x, varying over (conceptual) time, t. The 
individual could then conceive of covering the domain of t-values using intervals of size ε, 
and consider the variation of x in these intervals (i.e. considering xε as the set of x-values 
(x(t), x(t + ε)) = x(tε)). Thompson (2011) concluded his description, “I can now represent a 
conception of two quantities’ values covarying as (xε, yε)= (x(tε), y(tε)). I intend the pair (xε, 
yε) to represent conceiving of a multiplicative object—an object that is produced by uniting in 
mind two or more quantities simultaneously” (p. 47). Apparent in both descriptions is the 
parametric nature of covariational reasoning; a student imagines two quantities varying with 
respect to (conceptual or experienced) time, eventually coordinating these two quantities with 
respect to each other to form a multiplicative unit.  

Drawing on the parametric conceptions of covariation described by Thompson (2011) and 
Saldanha and Thompson (1998), researchers (Moore & Thompson, 2015, in preparation; 
Weber, 2012) have described emergent shape thinking as a student conceiving graphs in 
terms of an emergent trace constituted by covarying (projected) magnitudes. We use Figure 1 
to represent instantiations of an emergent image of a graph representing the height and 
volume of liquid in a bottle covarying as liquid is poured into the bottle (i.e. hε = h(tε) and vε 
= v(tε) both increase as time, tε, increases). A student with such an image of a graph 
understands that the magnitude of the blue segment represents the height of liquid in the 
bottle and the magnitude of the red segment represents the volume of liquid in the bottle at a 
certain moment of (experiential or conceptual) time, and that the resulting trace is a product 
of tracking how these quantities covary with respect to (experiential or conceptual) time (i.e. 
understands the graph as representing (hε, vε) = (h(tε), v(tε))).  

 

     
Figure 1: A representation of an emergent conception of covarying quantities. 

Methods 
 



We conducted a semester-long teaching experiment (Steffe & Thompson, 2000) with two 
undergraduate students, Arya and Katlyn (pseudonyms), to explore the ways of reasoning 
students engage in during activities intended to emphasize reasoning about relationships 
quantitatively and covariationally (e.g., if the students engaged in emergent shape thinking, 
what ways of reasoning supported this?). The students were enrolled in a secondary education 
mathematics program at a large state institution in the southern U.S. Both were juniors (in 
credit hours taken) who had successfully completed a calculus sequence and at least two 
additional courses beyond calculus. The teaching experiment consisted of three individual 
semi-structured task-based clinical interviews (per student) (Clement, 2000) and 15 paired 
teaching episodes (Steffe & Thompson, 2000). Each clinical interview and teaching episode 
lasted approximately 1.25 hours. We video and audio recorded the sessions and we captured 
and digitized records of the students’ written work at the end of each episode.  

When analyzing the data we conducted a conceptual analysis–“building models of what 
students actually know at some specific time and what they comprehend in specific 
situations” (Thompson, 2008, p. 60)–to develop and refine models of the students’ 
mathematics. With this goal in mind, we analyzed the records from the teaching episodes 
using open (generative) and axial (convergent) approaches (Clement, 2000; Strauss & 
Corbin, 1998). Initially, we identified instances of Arya’s and Katlyn’s behaviors and actions 
that provided insights into each student’s understandings. We used these instances to generate 
tentative models of the students’ mathematics that we tested by searching for confirming or 
contradicting instances in their other activities. When evidence contradicted our constructed 
models, we made new hypotheses to explain the students’ ways of operating and returned to 
prior data with these new hypotheses in mind for the purpose of modifying previous 
hypotheses or characterizing shifts in students’ ways of operating. 

 
Task Design 

 
Throughout the teaching experiment, we provided Arya and Katlyn tasks that included 

prompts asking them to represent relationships between covarying quantities. We followed 
certain principles when designing these tasks. First, we designed tasks to include situations 
that would be familiar and accessible to the students, with most tasks including videos, 
applets, or images of phenomena (e.g., circular motion). Second, we avoided tasks that 
provided specific values for quantities to support the students in developing images of 
covariation that were magnitude based. Finally, we often asked students to construct multiple 
graphs related to a situation to explore if, and if so how, the students would leverage their 
images of the quantities and covariation between quantities when creating multiple graphs 
that may or may not differ in appearance. 

To illustrate, we used a variation of the Bottle Problem, which was designed by the Shell 
Centre (Swan & Shell Centre Team, 1985) and used by researchers investigating students’ 
covariational reasoning (e.g., Carlson et al. (2002), Carlson et al. (2001), Johnson (2012, 
2015)). We provided the students with a pictured bottle and asked them to imagine the 
experience of filling the bottle with liquid. We then asked them to graph the relationship 
between volume and height of liquid in the bottle as it filled with liquid. After they 
constructed a graph for a given bottle and a bottle for a given graph, we altered the prompt to 
ask the students to imagine liquid evaporating from the bottle. We then asked the students to 
represent the relationship between height and volume of liquid in the bottle for this new 
scenario.  

 
Results 

 



We first summarize the students’ actions when creating graphs to represent how the 
height and volume of liquid covaried as a bottle filled with liquid. We then present their 
activities addressing liquid evaporating from the bottle in order to illustrate the students 
representing an additional aspect of the situation in their graph: the direction in which they 
imagined the graph being traced out. We conclude by highlighting the students’ activities on 
a task that we implemented during the last clinical interview in which we explicitly asked the 
students to discuss a parametrically defined function for a graphed relationship. 

 
Overview of students’ activities addressing the Bottle Problem 

As the teaching experiment progressed, the students exhibited activities indicative of 
reasoning about graphs as emergent traces representing two covarying quantities they 
conceived as constituting some situation (i.e. emergent shape thinking). For instance, during 
the first part of the Bottle Problem, each student coordinated how the volume and height of 
liquid in a bottle covaried in terms of direction of change (MA2) and amounts of change 
(MA3); each student conceived that the two quantities increase in tandem and then 
determined how the volume of liquid changes for equal successive increases in liquid height. 
Each student then created a graph while maintaining an explicit focus on how all drawn 
points and traces represented the relationship she conceived between the height and volume 
of liquid. As an example, consider Katlyn’s activity as she created her graph (see Figure 
2(c)). Describing why she was drawing the red segment longer than the blue segment, Katlyn 
stated, “‘Cause this [pointing to (B) in the picture of the bottle recreated in Figure 2(a)] is so 
big compared to this [pointing to (A) in the picture of the bottle].” Katlyn then shaded in parts 
of her bottle (Figure 2(b)) corresponding to the segments in her graph, adding a dashed blue 
segment to represent the volume contained between tick 2 to tick 3 in her bottle (Figure 2(c)). 
Katlyn reasoned about the magnitudes of color-coordinated segments she constructed as 
representing amounts of volume within specific height intervals, understanding that each 
added segment corresponded to an amount of volume added to the total volume. Underlying 
this was Katlyn’s understanding of the trace of her curve representing projected magnitudes 
as represented in Figure 1 (i.e. using Thompson’s (2011) notation she conceived her graph as 
composed of the coordinate points (hε, vε) = (h(tε), v(tε)) with h(tε) and v(tε) representing 
height and volume as experiential or conceptual time, tε. elapses).  

 

  

(a)  (b)  (c)    (d)    
Figure 2: (a) Katlyn’s bottle (numbers and letters added for referencing), (b-c) Katlyn 

representing total volume with respect to height in the situation and a graph, and (d) 
Katlyn’s resultant graph from tick 0 to tick 3. 

Addressing water evaporating from the bottle 
After the students had constructed a graph for the bottle in Figure 2(a), we asked them to 

graph the relationship between height and volume of liquid in the bottle as the liquid 
evaporated from the bottle. We asked them to complete the graph on the same whiteboard as 
a graph representing the relationship between height and volume of liquid in the bottle as the 



bottle filled. Indicating they did not anticipate that their previously completed graph might 
represent the posed relationship, the pair first drew a new set of axes. As they continued to 
consider the new scenario, Arya noted they should start at “full volume, full height.” Katlyn 
then added, “It’s going to look backwards… We can literally just travel this way instead 
[motioning over the completed prior graph from the top-right most point back to the origin]. 
[To the interviewers] We’re done, we’re just going to travel this way [again motioning over 
the original curve from the top-right most point back to the origin].” As the interaction 
continued, Katlyn’s actions suggested she now conceived the prior graph as (h2ε, v2ε) = (h(t2ε), 
v(t2ε)) with h(t2ε) and v(t2ε) decreasing as experiential or conceptual time in this second 
situation, t2ε, elapses (recreated in Figure 3(a)-(c)).  

 

 
(a)   (b)   (c)   (d) 

Figure 3: (a)-(c) A recreation of the students’ graph as an emergent trace and (d) a recreation 
of their graph with the added arrow representing the direction of the trace. 

To investigate if using the same curve for a new context created a perturbation for the 
students, we asked, “Is the situation the same? You’re ending up with the same graph.” 
Katlyn responded, “No, I just want to draw little arrows... we’re going this way now [draws 
an arrow on the curve pointing towards the origin, recreated in Figure 3(d)].” As she 
addressed the displayed graph representing two (experientially) different situations, Katlyn 
differentiated the two situations by adding an arrow to indicate the direction in which the 
graph is traced out with respect to the second situation; Katlyn parameterized her graph (from 
our perspective) with respect to (experiential or conceptual) time to differentiate how it is 
traced out with respect to how the previous graph is traced out. Adopting Thompson’s (2011) 
notation, Katlyn understood the displayed graph as composed of points (h, v) representing the 
appropriate magnitudes of height and volume of liquid in the bottle, regardless if liquid is 
entering or leaving the bottle. In the first scenario, she understood (h, v) = (h1ε, v1ε) = (h(t1ε), 
v(t1ε)) with t1ε representing (experiential or conceptual) time as liquid enters the bottle. In the 
second scenario she understood (h, v) = (h2ε, v2ε) = (h(t2ε), v(t2ε)) with t2ε representing 
(experiential or conceptual) time as liquid evaporates from the bottle.  

 
The Car Problem 

We conjectured that the students’ actions addressing the Bottle Problem had the potential 
to support them in becoming explicitly aware of the parametric nature of their reasoning as 
well as possibly bringing to the surface parametric functions. We intended to explore the 
extent that we could support the students in bringing this reasoning to the forefront as they 
addressed the Car Problem that Saldanha and Thompson (1998) designed to investigate 
students’ covariational reasoning. This task involves the students representing the 
relationship between an individual’s distances from two cities as the individual travels back-
and-forth along a road (see Figure 4(a)). Because the relationship is such that neither distance 
is a function of the other distance, we conjectured raising the idea of function after the 
students constructed their graphs might support them in reasoning about an explicitly defined 
parametric function.  



Both students initially described the directional variation of each distance (e.g., as Homer 
moves from the beginning of his trip, the distance from each city decreases) (MA2). As Arya 
attempted to represent this relationship in her graph, she drew a segment from right to left 
getting closer to the horizontal and vertical axis (indicated by (1) in Figure 4(b)). After Arya 
re-described the directional relationship she conceived in the situation, she moved to her 
graph and marked points on each axis to confirm her graphed segment represented that 
Homer’s distance from each city was decreasing (indicated by (2) and (3) in Figure 4(b)). As 
in previous situations, Arya conceived her graph as an emergent trace representing two 
projected covarying magnitudes, indicated by her careful attention to the axes when drawing 
this segment. Further, and similar to the students’ activities addressing the Bottle Problem, 
Arya added an arrow to her completed graph (Figure 4(c)) to represent an additional aspect of 
the situation: how the graph was traced as Homer traveled along the road. 

 

     
(a)     (b)    (c) 

 
Figure 4: (a) The Car Problem applet, (b) a recreation of Arya’s work, and (c) a recreation of 

Arya’s final graph. 

After Arya described that her graph did not represent distance from Springfield as a 
function of distance from Shelbyville or distance from Shelbyville as a function of distance 
from Springfield, and hoping to raise the idea of a parametrically defined function, a 
researcher asked, “What if your input was total distance traveled and your output was two-
dimensional?” He then described the output as being composed of both the distance from 
Springfield and the distance from Shelbyville. Arya stated that this relationship represented a 
function as each total distance input corresponded to exactly one pair of distances.  

Similarly, addressing whether the relationship with the same two-dimensional output but 
with ‘distance on the path’ as the input represented a function, Katlyn identified, “Well that’s 
what [my graph] shows, right?” Katlyn stated that for any of Homer’s distances on the path 
there was only one corresponding coordinate point on her graph, concluding that this 
relationship represented a function. Katlyn added, “I understand, like, what I’ve been drawing 
this whole time is like, how I’m traveling on like this purple path. But I don’t, I never thought 
of that as my input, but it really is.” Both students were able to assimilate a question 
concerning a one-dimensional input and two-dimensional output to consider a parametrically 
defined function after they had engaged in constructing the relationship via covariational 
reasoning and considered the graph as an emergent trace of this covariation. 

 
Discussion 

 
The students’ activities here (and throughout the teaching experiment) provide examples 

of students who developed and maintained images of covariation we interpreted to be 
compatible with the descriptions of Thompson, Saldanha, and Moore. In addition, we 
conjecture the students’ reasoning addressing the Bottle Problem raised an intellectual need 
for parametric functions, a need that we then capitalized on with the Car Problem. Harel 



(2007) described, “The term intellectual need refers to a behavior that manifests itself 
internally with learners when they encounter an intrinsic problem—a problem they 
understand and appreciate” (emphasis in original, p. 13).  

When addressing water evaporating in the Bottle Problem, the students’ actions resulted 
in their encountering an intrinsic problem (i.e. experiencing an intellectual need). 
Specifically, the students came to understand one curve as corresponding to two different 
experiential situations, which resulted in them seeking to determine how to differentiate 
between the two situations while using one curve. We conjecture that this problem, which 
was supported by their thinking about graphs as emergent traces of covarying quantities, was 
critical to the students considering the parametric nature of the relationships they represented. 
That is, by understanding one curve as representing two different emergent traces, the 
students became explicitly aware of their thinking about the curve in terms of two related 
quantities and (experiential or conceptual) time.  

When addressing the Car Problem, we interpreted the students’ initial activities to 
indicate their reasoning parametrically about the relationship between Homer’s distance from 
the two cities covarying as Homer’s total distance or ‘distance on the path’ varied. However, 
the students did not explicitly conceive their graph parametrically until we asked the students 
to consider a relationship with a one-dimensional input and two-dimensional output as 
representing a function. Addressing this question, the students brought to the surface a 
particular conception of the graph, a graph as an emergent trace of covarying quantities, in 
relation to “function” (i.e. the uniqueness of a mapping). Both students described such a 
parametrically defined relationship as representing a function with Katlyn explicitly 
addressing the novelty of this reasoning to her (e.g., “I never thought of that as my input, but 
it really is”).  

In one of the few studies examining students’ understanding of parametric functions, and 
parameters more generally, Keene defined dynamic reasoning as “developing and using 
conceptualizations about time as a dynamic parameter that implicitly or explicitly coordinates 
with other quantities to understand and solve problems” (2007, p. 231). The students’ 
reasoning was compatible with Keene’s (2007) definition of dynamic reasoning with their 
initial activities in each problem being compatible with Keene’s description of implicitly 
coordinating time with other quantities. Although the students engaged in reasoning that was 
parametric or dynamic in nature when responding to both tasks, the students did not exhibit 
activities to indicate they were explicitly aware of the parametric nature of their reasoning 
until they addressed later questions that we designed to focus in this area. 

Unlike Keene (2007) and other researchers who have set out to examine students’ 
understandings of parameters and parametric function in differential equations or calculus 
settings (Stalvey & Vidakovic, 2015; Trigueros, 2004), in this study, we intended to examine 
students’ developing understandings of pre-calculus concepts through their quantitative and 
covariational reasoning; although this reasoning can be parametric in nature (e.g., emergent 
shape thinking) we did not expect to examine the students’ developing parametric function 
understandings. That fact that the students spontaneously engaged in reasoning that we 
interpreted as creating an intellectual need for parametric functions has both curricular and 
research implications. Future researchers and curriculum designers might examine how 
providing students with experiences in constructing graphs as emergent traces provide 
foundations for more explicit and formal introductions to parametric functions. For instance, 
and stemming from the current study ending before we could more extensively pursue the 
students’ reasoning about parametric relationships, researchers and educators should further 
explore how using different situations that result in students constructing and reasoning about 
the same displayed graph via different emergent traces has the potential to create an 
intellectual need for parametric relationships and functions.  
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