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Much research on students’ understanding of derivatives in applied contexts has been done 
in kinematics-based contexts (i.e. position, velocity, acceleration). However, given the wide 
range of applied derivatives in other fields of study that are not based on kinematics, this 
study focuses on how students interpret and reason about applied derivatives in non-
kinematics contexts. Three main ways of understanding or ways of thinking are described in 
this paper, including (1) invoking time, (2) overgeneralization of implicit differentiation, and 
(3) confusion between derivative expression and original formula. 
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The calculus concept of the derivative is important both within mathematics and in other 
disciplines like physics, engineering, economics, biology, and statistics. As such, researchers 
have been interested in how students use the derivative in a range of contexts (e.g., Bucy, 
Thompson, & Mountcastle, 2007; Christensen & Thompson, 2012; Zandieh, 2000). However, 
much of the mathematics education research dealing with applications of the derivative has 
been centered on the kinematics applications of position, velocity, and acceleration (e.g., 
Berry & Nyman, 2003; Marrongelle, 2004; Petersen, Enoch, & Noll, 2014; Schwalbach & 
Dosemagen, 2000). While velocity and acceleration are certainly common and useful 
applications of the derivative, there are myriad other uses of this concept in fields of study 
outside of mathematics. Given this deficit in exploring student understanding of the 
derivative in a wider variety of applications, I focus this paper on how students interpreted 
and reasoned about the derivative concept in applied, non-kinematics contexts. Specifically, I 
relate certain ways of understanding and ways of thinking exhibited by students that seemed 
particular to working with applied, non-kinematics derivatives. 

 
Ways of Understanding, Ways of Thinking 

For this paper, I draw on the constructs of ways of understanding and ways of thinking 
(Harel, 2008; Harel & Sowder, 2005) to explore certain aspects of how students might think 
and reason about derivatives in applied, non-kinematics contexts. First, Harel and Sowder 
(2005) use the term “mental act” to denote any internal mental action, such as interpreting, 
inferring, explaining, or searching. One single cognitive product of a mental act (or acts) in 
one given situation is termed a way of understanding. For example, if a student sees “dy/dx” 
and thinks “that’s the slope,” then the student has produced a single way of understanding 
dy/dx through the mental act interpret derivative symbol. If, in observing a student, a 
particular characteristic is found to be repeatedly associated with a given mental act, then 
Harel and Sowder term that a way of thinking. In the example, if the same student indicates in 
many situations or problem contexts that a derivative is a “slope,” then that student is 
considered to have a way of thinking associated with interpreting the derivative. 

The constructs of ways of understanding and ways of thinking are used in this paper to 
explore idiosyncrasies and difficulties evidenced by students in thinking about derivatives in 
applied, non-kinematics contexts. Some of the idiosyncrasies, which are discussed as possible 
ways of thinking, seemed specific to the applied context of the derivatives. Some of the 



difficulties appeared to be particular ways of understanding produced by the students as they 
performed mental acts related to reasoning about derivatives in applied contexts. 

 
Interview and Survey Data 

The data used for this paper consists of hour-long, task-based interviews with six first-
semester calculus students, and surveys conducted with 38 first-semester calculus students. 
The six interviewed students were recruited at the end of the same first-semester calculus 
class, which was taught in a fairly “traditional” manner by a mathematics department faculty 
member at a large university in the United States. Here I use “traditional” simply to indicate 
that nothing seemed unusual in the presentation of the material in this course. In this paper, 
the interviewed students are given the pseudonyms: Jack, Lily, Noah, Zoe, Oliver, and Toby. 

The 38 surveyed students came from two different calculus classes at the same university 
(25 students in one class, 13 in the other), with these two classes being different from the one 
in which the interviewed students were recruited. Thus, students were recruited from a total 
of three different classes with three different instructors at the same university. The classes 
were all taught in what could be described as a fairly typical manner. 

The six interviewed students were given a range of contexts in which they were asked to 
discuss the derivative concept. The interview consisted of five prompts (see below), though 
for the purposes of this paper I focus only on the three “applied” prompts, which asked the 
students to calculate and discuss derivatives in applied, non-kinematics contexts. Note that all 
“fractional” expressions, like “df/dx,” are formatted this way for the purposes of the paper, 

but were given to the students as “
df

dx
.” 

1. Let f(x) = x4. Calculate df/dx and explain what it means. 
2. Given the formula z = rt + st2 + rs/t, calculate dz/dt and explain how you did it. 
3. Suppose we have a cylinder with radius r and height h [an image of an unlabeled 

cylinder is provided]. The volume formula for a cylinder is V = πr2h. (a) Calculate 
dV/dr. What does this answer tell you? (b) Calculate dV/dh. What does this answer 
tell you? 

4. The force of gravity (F) is dependent on how far an object is from the Earth’s center 
(r), given by the formula F = GmM/r2. (M and m are the mass of the earth and the 
object and G is the “gravitational constant.”) (a) Calculate dF/dr. What does that tell 
you? (b) Calculate dF/dm. What does this answer tell you? 

5. What would these following derivatives tell you? Should they each be positive or 
negative? (a) dS/dp, if p = price of a book, and S = number of books sold; (b) dV/dr, if 
V = volume, and r = radius of a sphere; (c) dM/dt, if M = memory, and t = time. 

 
Many follow-up questions were used during the interviews based on the students’ 

responses, such as “Why does your answer tell you that?,” “What does it mean that the 
answer has a negative sign?,” or “For every increase in __, will I get the same change in __?” 

The interviews were fully completed before the administration of the surveys. This was 
done intentionally to allow a preliminary analysis of the interview data to occur prior to the 
survey creation. In this way, I identified individual students’ potential ways of understanding 
and ways of thinking from the interview data and then tailored the survey questions to see if 
some of those same ways of understanding/thinking might be replicated by a larger sample of 
students. In order to create a brief survey protocol, the surveys only contained two applied, 
non-kinematics questions, which corresponded to the third and fourth interview prompts: 

 



1. The volume of a cylinder with radius r and height h is given by V = πr2h. (a) 
Calculate dV/dr and then state the meaning of dV/dr. (b) Suppose that r increases. 
Describe as much as you can what your answer to part (a) tells you about the 
cylinder’s volume. How does your answer tell you that? 

2. The force of gravity between an object and the Earth is given by F = GmM/r2 (r is the 
object’s distance from Earth’s center, M and m are the masses of the earth and the 
object, and G is a constant). (a) Calculate dF/dr and then state the meaning of dF/dr. 
(b) Suppose that r increases. Describe as much as you can what your answer to part 
(a) tells you about the force of gravity. How does your answer tell you that? 

 
Data Analysis 

Since much work has already been done in examining how students understand the 
fundamental ideas contained in the derivative concept (e.g., Habre & Abboud, 2006; Orton, 
1983; Zandieh, 2000), this paper is not meant to repeat the results of these prior studies. 
Consequently, I did not focus the analysis for this study on students’ overall understandings 
and meanings assigned to the generic derivative concept. Rather, I focused on exploring 
aspects of students’ thinking and reasoning that seemed pedagogically important regarding 
working with applied, non-kinematics derivatives. 

The preliminary analysis of the interview data, mentioned in the previous section, 
consisted of using open coding (Strauss & Corbin, 1998) to identify plausible ways of 
understanding/thinking specific to applied, non-kinematics derivatives exhibited by the 
individual students. This led to the creation of three main categories, which are described in 
the results section: (1) invoking time, (2) overgeneralization of implicit differentiation, and 
(3) confusion between the derivative expression and the original formula. Once this 
preliminary analysis had been conducted, the survey protocol was created and administered 
to identify whether these categories would be observed in a larger sample. 

Following the survey administration, a more systematic coding of the data occurred by 
going through the interviews and surveys to code for all instances of the three categories. 
Throughout the process, I remained open to the possibility of new categories emerging. 
While no “top-level” categories were introduced at this stage, a distinct subset of the third 
category took shape that centered on confusion around applied derivative expressions that 
were constant. The data was re-coded a final time looking for instances of this subcategory. 
Unfortunately, this subcategory was explicitly identified after the survey administration, 
meaning no question had been included on the survey to target it in the larger survey sample. 

 
Results 

In this section, the three categories listed in the previous section are discussed through the 
lens of ways of understanding and ways of thinking. That is, there appeared to be certain 
idiosyncratic tendencies from many of the students, which provided evidence of ways of 
thinking related to applied derivatives. In addition, a common difficulty became evident in 
terms of how students interpreted applied derivatives. While perhaps not a way of thinking, it 
appears to be a common way of understanding. 

 
Invoking time 

To preface this subsection, I wish to draw attention to the fact that none of the “applied” 
interview prompts (with the exception of 5c) and none of the survey prompts explicitly 
required time as a factor in the derivative. For example, the derivative dV/dr does not require 



r nor V to change quickly or slowly in time, nor even at a steady rate with respect to time. It 
is therefore interesting that four of the interviewed students and 14 of the surveyed students 
interjected time explicitly into the contexts as they calculated and explained the applied 
derivatives, as demonstrated by these examples: 

 
Lily: [Explaining dV/dr] Like say [r] is changing at a rate of one meter per second, that’s 

really fast, but if it’s getting bigger constantly, this is going to, the volume itself… if 
it’s one meter per second… it changes smaller at first, but then bigger. 

 
Noah: [Explaining dV/dh] If we’re increasing the height by one every time, assuming that 

it happens in one-second or, like, the next time interval, the next time, then that would 
just be the same relationship. So, it would increase at the same, at a constant rate. 

 
Survey: [Explaining dF/dr] It’s talking about the force in relation to distance. It’s related 

to time and mass. 
 
Survey: [Explaining dV/dr] Volume is changing in relation to r in time. 
 
Thus, for many students the mental act “describe” or “explain” applied derivatives 

produced a way of understanding that explicitly attended to time. I hasten to add that 
involving time is not incorrect, since changes in real-world quantities can essentially only be 
envisioned over time. Furthermore, for many of the students, it seemed that interjecting time 
was a useful way to explain the meaning of these derivatives. For example, in Lily’s excerpt, 
she used the context of a radius increasing at a steady rate in time to help explain that the 
volume would always grow, but by a smaller rate at first and then by a larger rate later. 

While these could be characterized as ways of understanding, since they are stand-alone 
explanations, some interviewed students had a strong tendency to insert time into most of the 
problem contexts, as exemplified by Zoe: 

 
Zoe: [Explaining dV/dr] If it was normal, let’s say it’s normal, it would be dV/dt, which 

would mean we would have meters cubed divided by time, in seconds. [Attempts to 
use analogous reasoning to interpret dV/dr, but unsuccessfully.] 

 
Zoe: [Explaining dS/dp] As the price gets cheaper, the number of books sold would 

decrease. That doesn’t, well, it depends [trails off]. But I suppose over time, if it’s a 
cheaper price for a longer amount of time, it would increase [S]. 

 
Interviewer: [Regarding prompt 5b] Why would the values of [V] be getting bigger? 
Zoe: I don’t know [pause]. Alright, [dV/dr] means change in volume over change in 

radius, so [long pause]. The rate at which—there’s no time involved!… So, as we’re 
changing the radius, imagine the radius is time, because as you’re affecting the radius, 
you can’t do it without time, because you can’t do things outside of time… If we 
negate the middle-man and negate the change in radius, then we’d just have the 
change in volume as the time changes. 

 
Zoe’s repeated inclusion of time shows that these were more than ways of understanding, 

but together demonstrate a strong way of thinking. Whereas some students, like Lily, could 
use time effectively to imagine a non-time-based derivative as needed, Zoe’s way of thinking 
seemed to hinder her reasoning at times, becoming more of a crutch than an aid. She often 



desired to alter the nature of the derivative from one that is time-less to one that is based on 
time. In the last excerpt, she even cut the radius from the context altogether in order to bring 
the derivative in line with her strong time-dependent thinking. 

 
Overgeneralization of implicit differentiation 

The second category I discuss in this paper is less conceptual in nature and represents 
more of an overgeneralization of a specific class of derivative problems. In typical first-
semester calculus courses students study applications of the derivative including optimization 
problems and related rates. Related rates deal with implicitly defining variables in terms of 
another “latent” variable, requiring implicit differentiation to solve the problems. For 
example, in V = 4/3πr3, the volume and radius could be thought of as functions of temperature 
(say, if the sphere is metallic), leading to V(T) = 4/3π[r(T)]3. Then derivatives such as dV/dT 
or dr/dT could be calculated through implicit differentiation. In this study, four of the 
interviewed students and 27 of the surveyed students assumed some of the variables in the 
formulas to be implicitly defined in terms of either the variable of differentiation or some 
other variable. For example, many students seemed to think that a derivative such as dV/dr 
required all or some variables to become implicitly defined in r—sometimes even the 
variable r itself! Time was also often invoked as a latent variable, making this category 
connected, in part, to the previous category. The following are examples from the students’ 
work (note that not all calculations would represent correctly calculated derivatives): 

 
 2 dh

drdV dr r  

 2 dr
drdV dr rh   

 2 dr
dtdV dr rh   

 22 dh
dtdV dr rh r     

 2 2dh dr
dt dtdV dt r rh     

 dm dM
dr drdF dr G M Gm    

 2 4[ (2 )] /dm dM
dr drdF dr r G GmM r r    

 2 4[ ( ) ( )2 ] /dM dm dr
dt dt dtdF dr r Gm MG GmM r r     

 
I once again note that implicitly defining some variables in terms of others is not 

necessarily incorrect, though many of the ways in which students did so in this study could be 
considered incorrect. For example, in V = πr2h, unless an extra condition is placed on the 
relationship between the radius and the height, height is not a function of the radius at all. 

Most of the students who forced some variables to be implicitly defined in terms of others 
did so for more than one problem. For example, most surveyed students who did this did so 
on both problems. As such, I consider this category to represent a way of thinking for many 
students. While more procedural in nature, it is important for educators to be aware of this 
tendency, given that over two-thirds of the students in this study forced implicit 
differentiation onto the non-implicitly-based applied derivatives. 

 
Confusion between the derivative expression and the original formula 

Perhaps the most important category to discuss in this paper is the confusion many of the 
students exhibited at times between the derivative formula and the original formula. Five of 
the interviewed students and 16 of the surveyed students gave evidence of this type of 
confusion, which is nearly half of all the students in this study. When interpreting and making 
sense of the derivative formula they calculated, many students began to explain the derivative 
formula as though it provided a value for the original quantity of interest. The following 
excerpts are examples of this type of confusion. 

 



Oliver: [After correctly calculating dF/dm = GM/r2] It’s the change in force as we change 
the mass of the object. And what this is telling us is, because there is no mass [little 
m] in the equation that the force isn’t subject to the mass of the object. 

Interviewer: OK, so would that mean that I could make the object more massive or less 
massive and that has no effect on force? 

Oliver: Right. 
 
Lily: [Explaining whether dS/dp would be positive or negative] I guess that would be 

positive, because there’s no such thing as selling a negative number of books. 
Lily: [Discussing what it would mean if dS/dp = 0] Zero would mean that no books are 

being sold at that specific price. 
 
Zoe: [Explaining dV/dh = πr2] This would imply that there is no change! 
… 
Interviewer: Whether you feel like it makes intuitive sense or not, what do you feel like 

that [points to the derivative formula] should be telling you? 
Zoe: That no matter how h changes, V remains the same. That’s doesn’t make sense! 
 
Survey: [Explaining dV/dr = 2πrh] The rate at which the volume of the cylinder is 

increasing is 2x the rate at which the radius is increasing (π and h are constants). 
Answer tells me that, because the derivative of the function is 2r (π and h being 
constants). Thus I know that the rate at which the volume is increasing is double the 
rate the radius is increasing. 

 
In these examples, it is clear that the students had essentially read the derivative 

expression as directly providing the value of the original quantity whose derivative was being 
calculated. In other words, the students explanations would make sense if the following 
substitutions were made: 

 
 dF/dm = GM/r2  →  F = GM/r2 
 dS/dp  →  S  

 dV/dh = πr2  →  V = πr2 
 dV/dr = 2πrh  →  V = 2πrh 

 
Essentially, these students seemed to have a particular way of understanding equations, in 

these moments, in which an equation takes on the meaning [quantity] = [expression]. That is, 
regardless of what is on the left of the equation, whether F or dF/dr, it seems to mean 
“quantity” instead of other possibilities, like “rate of change.” I wish to point out that many of 
the students were not consistent in doing this, but that they only occasionally made this error. 
As such, I am careful not to call it a way of thinking, which would assume a greater regularity 
than was visible in the data. Rather, for most students, I see it as a way of understanding, 
since it was the result of a particular mental act at one point in time. Even so, this conceptual 
mistake happened so often with both the interviewed and the surveyed students that this way 
of understanding seems to be an issue educators should be aware of. 

 
Confusion with applied derivatives that are constant 

In discussing the confusion between the derivative expression and the original expression, 
I note that the most frequent context for this confusion during the interviews was when the 
applied derivative yielded an expression that was constant. (Note that since I did not provide 
a constant derivative on the survey, I cannot comment about this issue for the surveyed 
students.) In expressions like dV/dh = πr2 and dF/dm = GM/r2, the variable of differentiation 



is not present on the right side of the equation. These cases would indicate a constant rate of 
change, which many of the students overlooked, believing it to mean a constant quantity 
instead. This led to much frustration in the students as they struggled to identify why the 
variable, such as h or m, would not have an impact on the quantity V or F. Some students, 
like Oliver and Zoe, were never able to reconcile the discrepancy between what the derivative 
expression seemed to be saying and what they intuitively believed to be true. It is important 
to note that these same students, during the pure-mathematics prompts, showed no difficulty 
whatsoever in making sense of a constant derivative in pure mathematics contexts (the 
interviewer asked about this as a follow up to prompt 1). As such, it seems that there was 
something fundamental about the applied nature of the derivatives used in this study that 
prevented the students from accessing resources they certainly had about the meaning of 
constant derivatives in pure mathematics contexts. 

 
Discussion and Implications 

In this paper I have highlighted three pedagogically important ways of understanding or 
ways of thinking exhibited by many of the interviewed and surveyed students in the study. 
Invoking time seemed to be a useful way of understanding for some students, though 
problematic for others when it became an almost uncontrollable way of thinking. This 
suggests that it would be important for calculus instructors to have explicit discussions 
regarding time and how it comes into play with applied, non-kinematics derivatives. Since 
typical applications of the derivative, including velocity and acceleration, are time-based, it 
may be important to explore other, non-time-based derivatives during instruction as well. 

Overgeneralization of implicit differentiation was the most commonly observed of the 
three categories in this study. This suggests that many students, when learning certain types 
of applications, such as related rates, may overgeneralize the implicit differentiation 
procedure into a belief that non-kinematics-based applied derivatives require variables to be 
defined implicitly with respect to either the variable of differentiation or time. While in some 
cases this may be fine, in many cases it may be incorrect, or at the least very burdensome. 
Thus, calculus instructors may need to have meta-discussions on the types of applications 
studied in class, so that students do not mistakenly believe that those procedures must be used 
for all applied problems. 

Perhaps the most important conceptual difficulty students had was in confusing the 
derivative expression with the original expression. This seems similar to what Musgrave and 
Thompson (2014) call “function notation as idiom,” wherein the symbol on the left of the 
equation just represents a “name” for the equation, leading to potentially problematic 
expressions like “f(x) = n(n-1)/2” (p. 283). In other words, students might not pay careful 
attention to what exactly is on the left side of the equation, but may rather simply view it as a 
label, usually for a quantity’s value (as opposed to other possibilities, like a rate of change). 
The right side of the equation is “where the math happens” (Musgrave & Thompson, 2014, p. 
286), and the expression’s value tends to represent the magnitude of the quantity of interest. 

Overall, this study shows that there are additional conceptual and procedural layers to 
working with applied derivatives in non-kinematics contexts. As such, perhaps the extensive 
emphasis placed on kinematics examples in calculus (Berry & Nyman, 2003; Marrongelle, 
2004; Schwalbach & Dosemagen, 2000) may not be adequately developing the resources 
needed to work with and reason about non-kinematics derivatives. Since there is a significant 
range of applied derivatives in other fields of study that are not based on kinematics, or even 
on time, it may be important for calculus educators to bring in these types of examples more 



regularly during calculus instruction. Doing so may help students develop the conceptual and 
procedural resources to effectively use and reason about these types of derivatives. 
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