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I present the results of a study designed to determine if there were incongruities between a 
secondary teacher’s mathematical knowledge and the mathematical knowledge he leveraged 
in the context of teaching, and if so, to ascertain how the teacher’s enacted subject matter 
knowledge was conditioned by his conscious responses to the circumstances he appraised as 
constraints on his practice. To address this focus, I conducted three semi-structured clinical 
interviews that elicited the teacher’s rationale for instructional occasions in which the 
mathematical ways of understanding he conveyed in his teaching differed from the ways of 
understanding he demonstrated during a series of task-based clinical interviews. My analysis 
revealed that that the occasions in which the teacher conveyed/demonstrated inconsistent 
ways of understanding were not occasioned by his reacting to instructional constraints, but 
were instead a consequence of his unawareness of the mental activity involved in 
constructing particular ways of understanding mathematical ideas. 
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Introduction 

Mathematics educators have devoted increased attention in recent years to: (1) identifying 
categories of knowledge that teachers must possess to effectively support students’ 
mathematics learning (e.g., Ball, 1990; Ball, Hill, & Bass, 2005; Ball, Thames, & Phelps, 
2008; Hill & Ball, 2004; Hill, Ball, & Schilling, 2008; Hill, Schilling, & Ball, 2004; 
Shulman, 1986, 1887), (2) characterizing the specific mathematical ways of understanding 
that allow teachers to engage students in meaningful learning experiences (e.g., Ma, 1999; 
Yoon et al., 2014), (3) discerning how teachers might construct such ways of understanding 
(e.g., Harel, 2008; Harel & Lim, 2004; Silverman & Thompson, 2008; Tallman, 2015), and 
(4) developing instruments to measure teacher’s knowledge and its effect (e.g., Hill et al., 
2008; Hill, Rowan, & Ball, 2005; Thompson, 2015). These initiatives, while essential to the 
enterprise of improving students’ mathematics learning, do not ensure teachers will utilize the 
full extent of their knowledge in the act of teaching. Teachers must recognize the knowledge 
they possess as appropriate to employ in the process of achieving their goals and objectives in 
the context of practice. This recognition is subject to a host of cognitive and affective 
processes that have thus far not been a central focus of research on teacher knowledge in 
mathematics education (Day & Qing, 2009, p. 17; Hargreaves & Shirley, 2009, p. 94; Meyer, 
2009, p. 89; Schutz et al., 2009, p. 207). Identifying the factors that condition the knowledge 
teachers utilize in the context of teaching, and understanding the effect of such factors on the 
quality of teachers’ enacted knowledge, is imperative for improving students’ mathematics 
learning and for fashioning well-informed teacher preparation and professional development 
programs and educational policies that take seriously the effect of teacher knowledge and the 
factors that compromise it. It is to this end that the present paper seeks to contribute. In 
particular, I address the following research questions:  



RQ1: Are there incongruities between a teacher’s subject matter knowledge and his 
enacted subject matter knowledge? 1 

RQ2a: If so, in what ways does the teacher’s image of instructional constraints condition 
the subject matter knowledge he utilizes while teaching? 

RQ2b: If not, how is the teacher appraising and/or managing what he perceives as 
instructional constraints so that these constraints do not condition the 
mathematical knowledge he enacts while teaching? 

 
Theoretical Framing 

The “image of” qualifier in the title of this paper suggests my radical constructivist 
approach to defining instructional constraints. I take the position that environmental 
circumstances per se in the absence of a teacher’s construal of them cannot constrain his or 
her practice, but the teacher’s construction and appraisal of environmental circumstances can 
and often does. For this reason, I contend that particular circumstances cannot maintain an 
ontological designation as instructional constraints, however consensual are teachers’ 
construction and appraisal of such circumstances. Therefore, in consonance with radical 
constructivism’s skeptical position on reality, I define instructional constraints as an 
individual teacher’s subjective construction of the circumstances that impede the teacher’s 
capacity to achieve his or her instructional goals and objectives. Such subjective 
constructions are the only “constraints” that maintain the potential to influence teachers’ 
instructional actions. Accordingly, I locate instructional constraints in the mind of 
individuals, not the environment. This conceptualization stands in stark contrast to the 
common perception of instructional constraints as external pressures that exert influence on 
the quality of teachers’ instruction. According to this view, the pressure comes from without 
instead of from within. My interest in understanding how a secondary teacher’s image of 
instructional constraints conditioned the mathematical ways of understanding and ways of 
thinking he utilized in the context of teaching necessitated my constructing a model of the 
teacher’s construction of those circumstances he appraised as constraints on his practice. 

As a result of my view that instructional constraints are subjective constructions that 
reside in the minds of teachers, I consider anything that a teacher appraises as an imposition 
to achieving his or her instructional goals and objectives to be an instructional constraint. The 
appraisal need not even be of an external circumstance. A teacher may appraise internal 
characteristics such as his or her mathematical self-efficacy, social endowments, creativity, 
tolerance, attitude, perseverance, temperament, empathy, confidence, etc., as imposing limits 
on the quality of his or her instruction. Since a teacher’s appraisal of such intrinsic 
characteristics is a subjective construction in the same way that a teacher’s appraisal of 
external circumstances is, both types of appraisals have the capacity to influence teachers’ 
practice in the same way.  
 

                                                
1 I note that the identification of incongruities between the teacher’s subject matter 
knowledge and the subject matter knowledge he invokes while teaching is from my 
perspective. Similarly, characterizing the effect of a teacher’s image of instructional 
constraints on his enacted mathematical knowledge is also a characterization from my 
perspective.  



Methods 

My experimental methods proceeded in three phases. In the first phase, I conducted a 
series of nine task-based clinical interviews (Clement, 2000; Goldin, 1997; Hunting, 1997) 
that allowed me to construct a model of the participating teacher’s (David’s) mathematical 
knowledge of various topics associated with trigonometric functions. In the second data 
collection phase, I used video data from 37 classroom observations to construct a model of 
the mathematical knowledge David utilized in the context of classroom practice. Finally, I 
employed a phase of three semi-structured clinical interviews to construct a model of David’s 
perception of instructional constraints and to discern the role of this image on the quality of 
his enacted mathematical knowledge. 

The goal of the series of task-based clinical interviews was to facilitate my construction 
of a model of David’s ways of understanding and ways of thinking (Harel, 2008) relative to 
angle measure, the outputs and graphical representation of sine and cosine, and the period of 
sine and cosine. Constructing a model of an individual’s cognition by projecting or imputing 
one’s cognitive schemes to the individual constitutes developing a first-order model (Steffe & 
Thompson, 2000). This is in contrast to developing a second-order model, in which the 
researcher attempts to make sense of the individual’s actions by interpreting them through the 
lens of his or her model of the individual, not through his or her own cognitive schemes 
(ibid.). It is important to note that the goal of the series of task-based clinical interviews I 
conducted was to construct a second-order model of David’s mathematical knowledge. 
Although I constructed a second-order model of David’s mathematics, this model does not 
constitute a direct representation of David’s knowledge, but rather a viable characterization 
of plausible mental activity from which his language and observable actions may have 
derived. Constructing such a model involved my generating prior to, within, and among task-
based clinical interviews tentative hypotheses of David’s ways of understanding that 
explained my interpretation of the observable products of his reasoning. I developed these 
provisional hypotheses by attending to David’s language and actions and abductively 
postulating the meanings that may lie behind them. I designed and modified tasks for 
subsequent interviews to test, extend, articulate, and refine my tentative hypotheses of 
David’s mathematical knowledge. 

All task-based clinical interviews took place in David’s classroom after school on the 
days that best suited his schedule. I attempted to schedule the interviews so that there was at 
least one day between each to accommodate for ongoing analysis, and accomplished this with 
the exception of the last two task-based clinical interviews. In each interview, I obtained 
video recordings that captured David’s writing, expressions, and gestures. I also created 
videos of my computer screen via QuickTime Player to capture the didactic objects 
(Thompson, 2002) David and I discussed as well as any work David completed on the 
computer. Additionally, I collected and scanned all written work that David produced during 
the interviews. 

I collected daily video recordings of two of David’s Honors Algebra II class sessions over 
a seven-and-a-half-week period, which resulted in 37 videos of classroom teaching. The only 
days I did not intend to collect videos of David’s teaching were those days students were 
testing or the days David was teaching content unrelated to the angle measure, sine, or cosine. 
While the classroom observations did not demand the type of ongoing analysis that was part 
and parcel of the series of task-based clinical interviews, I documented, in the form of 
memos, the mathematical understandings and ways of thinking David afforded his students 
the opportunity to construct. I must emphasize that I characterized the ways of understanding 
and ways of thinking David allowed his students to construct, and not the understandings and 



ways of thinking his students actually constructed. In essence, I documented the 
understandings that I would be able to construct, and the ways of thinking that I would be 
able to develop, were I an engaged student in the class with sufficient background 
knowledge, uninhibited by unproductive understandings or disadvantageous ways of 
thinking. 

The objective of the third phase of my experimental methodology was to obtain data that 
allowed me to construct a model of David’s image of those aspects of his environmental 
context that he appraised as constraints on the quality of his instruction, and to determine the 
way in which this image conditioned the mathematical knowledge he employed in the context 
of teaching. Constructing such a model and determining the effect that David’s image of 
instructional constraints had on his enacted subject matter knowledge involved my 
conducting a series of three semi-structured clinical interviews after David completed his 
instruction of trigonometric functions. 

The content of these semi-structured clinical interviews was heavily informed by my 
analysis of the data I obtained from the series of task-based clinical interviews as well as 
from David’s teaching. Based on my analysis of this data, I selected video clips to discuss 
with David during the clinical interview sessions to discern the role of David’s image of 
instructional constraints on the quality of his enacted mathematical knowledge. I devoted 
particular attention to ascertaining David’s rationale for those instructional actions in which 
the mathematics he allowed students to construct differed from the mathematical ways of 
understanding he demonstrated during the series of task-based clinical interviews. It is 
essential to point out that I did not assume David recognized the discrepancies I noticed in the 
videos excerpts I selected to discuss. Therefore, after having presented pairs of videos to 
David that I believed demonstrated him conveying/supporting discrepant meanings, I asked 
him to compare the ways of understanding he communicated in both videos. My rationale for 
doing so was to determine if David recognized the same inconsistencies that I noticed in the 
ways of understanding he demonstrated/conveyed. 

 
Analytical Framework 

I leveraged explicit formalizations of quantitative reasoning (Smith & Thompson, 2007; 
Thompson, 1990, 2011) in the design of the present study and my analysis of its data. A 
growing body of research (e.g., Castillo-Garsow, 2010; Ellis, 2007; Moore, 2012, 2014; 
Moore & Carlson, 2012; Oehrtman, Carlson, & Thompson, 2008; Thompson 1994, 2011) has 
identified quantitative reasoning as a particularly advantageous way of thinking for 
supporting students’ learning of a wide variety of pre- and post-secondary mathematics 
concepts. Additionally, this body of research has demonstrated the diagnostic and 
explanatory utility of quantitative reasoning as a theory for how one may conceptualize 
quantitative situations. 

 Quantitative reasoning is a characterization of the mental actions involved in 
conceptualizing situations in terms of quantities and quantitative relationships. A quantity is 
an attribute, or quality, of an object that admits a measurement process (Thompson, 1990). 
One has conceptualized a quantity when she has identified a particular quality of an object 
and has in mind a process by which she may assign a numerical value to this quality in an 
appropriate unit (Thompson, 1994). It is important to note that quantities do not reside in 
objects or situations, but are instead constructed in the mind of an individual perceiving and 
interpreting an object or situation. Quantities are therefore conceptual entities (Thompson, 
2011). 



Conceptualizing a quantity does not require that one assign a numerical value to a 
particular attribute of an object. Instead, it is sufficient to simply have a measurement process 
in mind and to have conceived, either implicitly or explicitly, an appropriate unit. 
Quantification is the process by which one assigns numerical values to some quality of an 
object (Thompson, 1990). Note that one need not engage in a quantification process in order 
to have conceived a quantity, but must have in mind a quantification process whereby she 
may assign numerical values to the quantity (Thompson, 1994). Defining a process by which 
one may assign numerical values to a quantity often involves an operation on two other 
quantities. In such cases we say that the new quantity results from a quantitative operation—
its conception involved an operation on two other quantities. Quantitative operations result in 
a conception of a single quantity while also defining the relationship among the quantity 
produced and the quantities operated upon to produce it (Thompson, 1990, p. 12). It is for this 
reason that quantitative operations assist in one’s comprehension of a situation (Thompson, 
1994). It is important to note the distinction between a quantitative operation and a numerical 
or arithmetic operation. Arithmetic operations are used to calculate a quantity’s value 
whereas quantitative operations define the relationship between a new quantity and the 
quantities operated upon to conceive it (Thompson, 1990). 

 
Results 

On several occasions David demonstrated ways of understanding during the series of 
task-based clinical interviews that were inconsistent or incompatible with the ways of 
understanding his instruction supported. I selected three such occasions to discuss with David 
during a phase of clinical interviews I conducted after David completed his instruction of 
trigonometric functions. Specifically, I presented David with three pairs of videos, each 
containing an excerpt from the series of task-based clinical interviews and an excerpt from 
his classroom teaching. From my perspective, these pairs of videos exemplified David 
communicating discrepant mathematical meanings. My purpose in presenting David with 
these pairs of videos was to determine if he willingly compromised the quality of his enacted 
mathematical knowledge in response to the circumstances and events he appraised as 
instructional constraints. The following is a presentation of my analysis of our conversation 
around one of these three pairs of video excerpts. I do not discuss my analysis of David’s and 
my conversation around the second and third pair of video excerpts since the conclusions 
drawn therefrom are consistent with those I present below. 

I presented David with a video from the fourth task-based clinical interview in which he 
used an applet (see Table 1) to successfully approximate the values of sin(0.5) and cos(¾). 
During this interview David interpreted the task of approximating the value of sin(0.5) as, 
“Estimate how many radius lengths is Joe north of Abscissa Boulevard when the angle traced 
out by his path is 0.5 radians.” In particular, David interpreted the 0.5 as representing the 
number of radius lengths that Joe had traveled along Euclid Parkway and sin(0.5) as 
representing Joe’s distance north of Abscissa Boulevard in units of radius lengths. David 
similarly interpreted the task of approximating the value of cos(¾) in the following way: 
“Estimate how many radius lengths Joe is to the east of Ordinate Avenue when his path has 
traversed an arc that is 3/4ths times as long as the radius of Flatville.” David’s response to the 
task of using the applet in Table 1 to approximate the values of sin(0.5) and cos(¾) suggests 
that he had constructed the outputs of sine and cosine as quantities; that is, as measurable 
attributes of a geometric object. After David watched the video except from the fourth task-
based clinical interview, he described the way of understanding he demonstrated in a way 
that was consistent with my interpretation. 



 
Table 1 
Applet Designed to Support a Quantitative Understanding of Sine and Cosine Values 
Suppose Joe is riding his bike on Euclid Parkway, a perfectly circular road that defines the 
city limits of Flatville. Ordinate Avenue is a road running vertically (north and south) through 
the center of Flatville and Abscissa Boulevard is a road running horizontally (east and west) 
through the center of Flatville. Assume Joe begins riding his bike at the east intersection of 
Euclid Parkway and Abscissa Boulevard in the counterclockwise direction. 

Ordinate
Ave.

Abscissa
Blvd.

Euclid
Pkwy.

Joe

 
 
After David watched the video excerpt from the fourth task-based clinical interview, I 

presented him with a video excerpt from Lesson 7 (which occurred four days after the fourth 
task-based clinical interview) in which he defined the outputs of sine and cosine relative to 
the following two cases: (1) when the radius of the circle centered at the vertex of an angle 
has a measure of one unit and (2) when this radius does not have a measure of one unit. 
Specifically, in the video excerpt David claimed that if the radius of the circle has a measure 
of one unit, then the sine and cosine values of the angle’s measure are respectively equal to 
the y- and x-coordinates of the terminus of the subtended arc. David then explained that if the 
radius of the circle centered at the angle’s vertex does not have a measure of one unit, then 
the values of sine and cosine are given by the respective ratios of the y- and x-coordinate of 
the terminal point to the length of the radius. It is noteworthy that David’s explanation did not 
support students in conceptualizing sine and cosine values as the measure of a quantity in a 
particular unit. In other words, David’s explanation in Lesson 7 did not support students in 
being able to answer the question, “What are the attributes to which sine and cosine values 
may respectively be applied as measures and in what unit are these attributes being 
measured?” In contrast to the quantitative way of understanding the outputs of sine and 
cosine David demonstrated in the fourth task-based clinical interview, during Lesson 7 David 
conveyed sine and cosine values as respectively representing y- and x-coordinates of the 
terminal point, or as arithmetic operations (i.e., sin(θ) = y/r and cos(θ) = x/r).  

After David viewed the two video excerpts, I asked him to determine if the way of 
understanding he supported in the excerpt from Lesson 7 differed from the understanding he 
employed to approximate the value of sin(0.5) and cos(¾) in the excerpt from the fourth task-
based clinical interview (Excerpt 1). 

 
Excerpt 1 



Michael: Is there any way that the understanding of sine and cosine you convey in this clip 
(Lesson 7) is different from what you did here (Task-Based Clinical Interview 4)? 

David: Only in the units of measure that we started with to obtain the ratio, but in the end 
we end up with an output that is a proportion of the entire radius. So in the end, no 
[they aren’t different]. In the end they end up giving me the same thing. 

 
David did not appear to recognize the way of understanding he demonstrated in the first 

video excerpt as being fundamentally different from the way of understanding he conveyed in 
the second. David’s remark in Excerpt 1 focused primarily on the outcome of his application 
of two discrepant (from my perspective) ways of understanding instead of attending to the 
ways of understanding themselves. Like several occasions in other interviews in which David 
demonstrated an incapacity to attend to ways of understanding—either his own or his 
students’—his remarks in Excerpt 1 demonstrate that he had not achieved clarity relative to 
the mental activity involved in his own ways of understanding, nor of those he intended to 
support in his teaching. Had David done so, he would likely have been positioned to notice 
the discrepant meanings he conveyed in the videos I presented. David similarly failed to 
identify the inconsistent meanings he communicated in the other two pairs of video excerpts I 
presented to him.  
 

Discussion 

To investigate the role of David’s image of instructional constraints on his enacted 
subject matter knowledge, I provided opportunities for him to rationalize occasions in which 
the ways of understanding he supported in his teaching differed from the ways of 
understanding he demonstrated during a series of task-based clinical interviews. My analysis 
of our conversation around all three pairs of video excerpts revealed that David failed to 
notice the discrepancy in the ways of understanding he conveyed/demonstrated in these 
excerpts. David’s inability to recognize such discrepancies suggests that he was not 
consciously aware of the mental actions that comprise the meanings he intended to promote 
in his teaching, as such awareness would likely have equipped David with the cognitive 
schemes to recognize the inconsistent and often incompatible ways of understanding he 
conveyed in the excerpts we discussed. My analysis further revealed that the occasions in 
which David conveyed/demonstrated discrepant ways of understanding were not occasioned 
by his reacting to his image of instructional constraints.  

The results of this study suggest that inconsistencies between mathematics teachers’ 
subject matter knowledge and their enacted subject matter knowledge do not necessarily 
result from teachers’ making conscious concessions to the quality of their enacted knowledge 
in the process of accommodating for the circumstances and events they appraise as 
constraints on their practice. Such inconsistencies may be a byproduct of teachers’ 
unawareness of the mental activity that constitute their ways of understanding mathematical 
ideas. Pre-service mathematics teacher educators and in-service professional development 
specialists should therefore take care to provide opportunities for teachers to have explicit 
answers to questions like, “When my students read the symbols ‘sin(θ)’ what do I want them 
to imagine?” and “When my students look at an angle and think about measuring it in 
radians, what do I want them to visualize in their minds?” Providing opportunities for 
teachers to achieve such conscious awareness of the mental activity involved in particular 
ways of understanding may minimize the potential that teachers will not leverage the full 
extent of their subject matter knowledge to support students’ mathematics learning. 
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