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Binary operations are an essential, but often overlooked topic in advanced mathematics. 
We present results related to student understanding of operation from the Group Concept 
Inventory, a conceptually focused, group theory multiple-choice test. We pair results 
from over 400 student responses with 30 follow-up interviews to illustrate the role binary 
operation understanding played in tasks related to a multitude of group theory concepts. 
We conclude by hypothesizing potential directions for the creation of a holistic binary 
operation understanding framework. 
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Binary operations are at the heart of school mathematics from early arithmetic, to 
high school algebra, and their generalization: abstract algebra. The prominence and 
familiarity of operations can lead to the belief that they are a simple concept for 
university-level students. We validated this conjecture through surveying a panel of 
introductory abstract algebra instructors. All 13 felt that the difficulty of the binary 
operation concept was 5 or below on a 0 to 10 scale with an average value of 2.63. 

However, while students may have a strong understanding of binary operation in 
straight-forward contexts such as determining if a given relation is in fact a binary 
operation, a robust understanding is required to leverage binary operations in the contexts 
of building groups, differentiating between binary operations, appropriately checking 
properties, and dealing with unfamiliar structures. While the majority of students we 
surveyed could correctly determine that division is not a binary operation, understanding 
of binary operation seemed to contribute to incorrect responses on questions targeting 
understanding of group, subgroup, associative property, identities, and inverses.  

In this proposal, we present results from a large-scale implementation of the Group 
Concept Inventory (GCI). The inventory was designed to probe conceptual understanding 
around fundamental topics in introductory group theory. Over 400 students, representing 
a multitude of institution types across the United States, responded to each question. We 
pair these responses with interview data to hypothesize how binary operation 
understanding underlies conceptions around fundamental group theory topics.  

 
Literature Review 

 
All group theory relies on the concept of group: a set paired with a binary operation. 

A binary operation is a function that maps the cartesian product of a set of elements to 
that set of elements. For example, addition over the integers would be a binary operation 
as it inputs any two integers and returns one integer. In order to understand the 
generalized binary operation, not only would one need to make sense of operations and 
their properties, but also understand binary operation as a special case of function.  



The majority of research on binary operations exists within the specialized case of 
arithmetic operations. Slavit (1998) discussed operation sense in a series of stages built 
around familiarity with standard arithmetic operations and their relationships to other 
operations, properties they may possess, and their understanding independent of concrete 
inputs. However, this framework is built in terms of operations that are not arbitrarily 
defined but rather represent a standard process, such as combining groups in the case of 
addition. In addition to operation sense, operations have been discussed in terms of their 
duality as both a process and object.  Gray and Tall (1994) deem the symbol associated 
with an operation a procept. An expression such as “3+2” represents both the process of 
adding 3 and 2, as well as the resulting sum. Similarly a function defined as f(x)=3x+4 is 
both a direction for how to compute an output for any input, and also an object- the 
function for all x-values. 

As a binary operation can be any relation that is a function between a cartesian 
product of a set and the set itself, the generalized notion incorporates many of the 
complexities studied in the contexts of function. Understanding functions is challenging 
across grade spans (Oehrtman, Carlson, & Thompson, 2008), with their role as both 
processes and objects in addition to numerous representations. Notably, understanding 
functions (or binary operations) involves seeing function as an action (mapping 
individual inputs to outputs), process (a general process for mapping inputs to outputs), 
and object (that can itself be operated on such as comparing if two binary operations are 
the same) (Breidenbach, Dubinsky, Hawks, & Nichols, 1992; Brown DeVries, Dubinsky, 
and Thomas, 1997). Students have frequently proceduralized functions such as evaluating 
f(x+a) as being equal to f(x) + a (Carlson, 1998). Rather than coordinating what the input 
and output are, the students are superficially altering the function. Students have also 
been shown to have limitations in terms of representations, desiring an explicit rule 
written symbolically rather than just a correspondence of ordered pairs (Breidenbach, et 
al., 1992; Vinner & Dreyfus, 1989). 

Two additional frameworks have been contributed in terms of undergraduate 
understanding of binary operation. Novotná, Stehlíková, and Hoch (2006) approached 
binary operation from a structure sense view dividing understanding of binary operations 
into four levels: Recognise a binary operation in familiar structures; Recognise a binary 
operation in non-familiar structures; See elements of the set as objects to be manipulated, 
and understand the closure property; and See similarities and differences of the forms of 
defining the operations (formula, table, other). Rather than considering stages of mental 
constructions in terms of process/object reification, structure sense captures abstracting 
from familiar objects to unfamiliar. Ehmke, Pesonen, and Haapasalo (2005) contributed 
an analysis in terms of procedural and conceptual understanding. They identified students 
as having procedure-based understanding of binary operation if they could match binary 
operations if presented in different representations. The next level is procedure-oriented 
where students could also create different representations when prompted. The highest 
level is conceptual where students could not only move between representations, but also 
determine if a given relation was a binary operation. 

A number of studies have shown that binary operations are not a trivial topic, 
illustrating struggles with varying undergraduate populations including linear algebra 
students (Ehmke, Pesonen, & Haapasalo, 2005), abstract algebra students (Brown, et al., 
1997; Dubinsky, Dautermann, Leron, & Zazkis, 1994; Hazzan, 1999), in-service and pre-



service secondary teachers (Zaslavsky and Peled, 1996), and statistics students 
(Mevarech, 1983). Mevarech (1983) found introductory statistics students assumed that 
unfamiliar binary operations such as mean and variance had properties found in groups 
including the associative property. Zaslavsky and Peled found secondary in-service and 
pre-service teachers struggled to produce a binary operation that was associative, but not 
commutative. Binary operation related issues include defining a unary operation, and 
incorrectly considering repeated binary operations such as wrongly translating the 
associative property on the operation |a+b| as |a|+|b+c|=|a+b|+|c| rather than 
||a+b|+|c||=|a+|b+c|| or overgeneralizing such as considering the equality (a*b)+c=a*(b+c) 
to determine if (a*b)+c is a binary operation.  

Each of these studies explored some of the complexities associated with the binary 
operation concept. The group theory context is often the first time that students are asked 
to reason about binary operations that may be unfamiliar. Furthermore, until group 
theory, they have likely not reasoned about the binary operation as a general concept.  

 
Methods 

 
These results stem from a larger project developing a concept inventory targeting 

conceptual understanding in introductory group theory. A 17-item instrument was 
developed, field-tested and refined through several rounds of validation studies 
(AUTHOR).The results reported here come from the final round of field-testing across 
the United States. Students from 33 institutions took this survey after finishing an 
introductory group theory portion of an undergraduate abstract algebra course. The 
survey was administered online. Institutions participating were geographically diverse 
and representative of varying levels of selectivity including 14 institutions with 
acceptance rates greater than 75%, 10 institutions with acceptance rates between 50-75%, 
and 7 institutions with acceptance rates less than 50%.      

Throughout the field-testing, follow-up interviews were conducted to validate the 
interpretation of student responses. A total of thirty interviews were conducted including 
15 with students during an open-ended round, and 15 with students completing the 
closed-form multiple-choice version. The students were prompted to explain their answer 
selection and their understanding of the relevant underlying concept.   

 
Preliminary Results 

 
The following results include examples of three GCI questions where understanding 

of binary operation appeared to influence student performance. In the first question, 
students are asked to define a binary operation on a set to form a group. In the second 
question, students determine if a given subset is a subgroup. In the third question, 
students evaluate if an unfamiliar operation is associative. 

Students were asked to consider the set: {1,2,4}. This set was selected because it does 
not correlate nicely to any group students likely studied. Instead, to correctly address the 
prompt, students would need to recognize that a binary operation can be defined on any 
set with or without a symbolic rule. As can be found in Table 1, only 23% of students 
selected the correct response. Thirty-six percent of students responded with a familiar 
operation that would not meet group requirements, while the remaining students wanted 



the set to have additional elements in order to define a closed binary operation. This latter 
group represents a potential limitation in ability to construct an abstract binary operation. 
In follow-up interviews, a number of students explained that they tested various known 
operations declaring the sentiment that, “there’s no operation I could think of” that would 
meet the requirements. In contrast, students selecting the correct response appeared to 
have a more sophisticated understanding of binary operation. In follow-up interviews, 
they explained that a binary operation can be made to meet group requirements by 
building an unfamiliar binary operation through leveraging alternate representations such 
as building a Cayley Table or defining the operation element-wise.  

 
Table 1    
 
Percentage of Students Selecting each Response for Defining a Group Question 

 
Response Percentage (n=468) 
Yes, because an operation can be defined on any three element set to form a group. 23% 
Yes, multiplication mod 6. 36% 
No, the set will not be closed under any operation. 18% 
No, the identity element 0 would be needed. 10% 
None of the above reasoning is valid 14% 

Table 2 includes student response selections for the question on subgroup. This 
question (or a variant of it) has been used in several prior studies to illustrate student 
conceptions around subgroup and Lagrange’s Theorem (Dubinsky, et al., 1994; Hazzan 
& Leron, 1996). Dubinsky et al. posited that students who identified Z3 as a subgroup of 
Z6 where not coordinating binary operation and set correctly - failing to see that the 
operation of a subgroup must be inherited from the supergroup. However, during many of 
the follow-up interviews conducted with students who selected the first and second 
option, the students articulated a notion that the subgroup’s operation was “inherited.” 
Several students explained that “it’s the same operation” in Z3 and Z6, seeming to rely on 
a generalized version of modular addition. These students did not seem unable to 
recognize the need for the same binary operation, but rather did not appropriately address 
what it means to have the different operations. Instead of evaluating if the products of 
elements were the same, they instead relied on the general rule which appears to be the 
same type of operation. 

 
Table 2    
 
Percentage of Students Selecting each Response for  Subgroup Question 

 
Response Percentage (n=429) 

 13% 

 36% 

 6% 
 44% 

In this third question, students had to address an operation that was not associative, 
averaging. In relation to binary operation, there are two notable responses found in Table 
3: the first where students did not feel the need to address a new operation because of its 



component parts being familiar associative operations, and the third option where 
parentheses are moved artificially. Students selecting the first choice may be superficially 
applying the idea of associativity being “inherited” in a new situation. Students selecting 
the third response fall into Zaslavsky and Peled (1996) overgeneralization category. We 
conjecture these students may have more fundamental issues with the binary operation 
procept. These students were not repeatedly operating on two elements to determine if (a 
◊ b) ◊ c=a ◊ (b ◊ c), but rather treating subcomponents of the binary operation as if they 
were three different inputs. This mimics function issues where students struggle to 
appropriately evaluate expressions such as f(x+a). A robust understanding of binary 
operation requires making sense of what constitutes the input and how repeated binary 
operations are calculated.  

 
Table 3    
 
Percentage of Students Selecting each Response for Associativity Question 

 

 
Response Percentage 

(n=432) 
 29% 

 22% 

 
17% 

 31% 

 
Discussion 

 
The three results above illustrate some of the additional complexities associated with 

binary operation as found in field-testing of the GCI. Binary operation conceptions can 
underlie performance in a number of essential group theory tasks. Furthermore, the 
student responses serve as a starting ground for expansion of previous work on student 
conceptions of binary operation. Ehmke, Pesonen, and Haapasalo’s (2005) conceptual 
levels might need to be expanded where creating an unfamiliar binary operation on a 
given set may represent an even higher level of conceptual understanding. Novotná and 
Hoch (2008) identified determining if two binary operations are the same or different as 
the top level of binary operation understanding. This ability seemed crucial to 
appropriately addressing the question related to subgroup. Finally, in the associativity 
question, students may be more than just overgeneralizing (Zaslavsky and Peled, 1996), 
but have fundamental issues correctly operating. As binary operation is a special case of 
function, these complexities mimic many of the issues found in understanding functions 
for various level students. Exploring the role of binary operation can help provide insight 
into why students may struggle with various aspects of these algebra courses. Additional 
analysis of these results can hopefully build a more holistic framework of binary 
operation understanding, 
 

Questions for the Audience 



1. What might a comprehensive framework for student understanding of binary 
operation look like? 

2. How might student conceptions around binary operations influence their 
understanding in other advanced mathematics courses? 

 
References 

Breidenbach, D., Dubinsky, E., Hawks, J. & Nichols, D. (1992). Development of the 
process conception of function. Educational Studies in Mathematics, 23, 247-285. 

Brown, A., De Vries, D., Dubinsky, E. & Thomas, K. (1997). Learning binary operations, 
groups, and subgroups. Journal of Mathematical Behavior, 16 (3), 187-239. 

Carlson, M. P. (1998). A cross-sectional investigation of the development of the function 
concept. In Research in Collegiate Mathematics Education III, Conference Board 
of the Mathematical Sciences, Issues in Mathematics Education (Vol. 7, No. 2, 
pp. 114-162). 

Ehmke, T., Pesonen, M., & Haapasalo, L. (2011). Assessment of university students’ 
understanding of abstract binary operations. Nordic Studies in Mathematics 
Education (NOMAD), 3, 368-387. 

Dubinsky, E., Dautermann, J., Leron, U., & Zazkis, R. (1994). On learning fundamental 
concepts of group theory. Educational studies in Mathematics,27(3), 267-305.   

Gray, E. M., & Tall, D. O. (1994). Duality, ambiguity, and flexibility: A "proceptual" 
view of simple arithmetic." Journal for research in mathematics education (1994): 
116-140. 

Hazzan, O. (1999). Reducing abstraction level when learning abstract algebra concepts. 
Educational Studies in Mathematics, 40(1), 71-90. 

Hazzan, O., & Leron, U. (1996). Students' use and misuse of mathematical theorems: The 
case of Lagrange's theorem. For the Learning of Mathematics, 23-26. 

Mevarech, Z. R. (1983). A deep structure model of students' statistical misconceptions. 
Educational studies in mathematics, 14(4), 415-429. 

Novotná, J., Stehlíková, N., & Hoch, M. (2006, July). Structure sense for university 
algebra. In Proceedings of the 30th Conference of the International Group for the 
Psychology of Mathematics Education (Vol. 4, pp. 249-256). 

Oehrtman, M., Carlson, M., & Thompson, P. W. (2008). Foundational reasoning abilities 
that promote coherence in students’ function understanding. Making the 
connection: Research and teaching in undergraduate mathematics education, 27-
42. 

Slavit, D. (1998). The role of operation sense in transitions from arithmetic to algebraic 
thought. Educational Studies in Mathematics, 37(3), 251-274. 

Vinner, S. & Dreyfus, T. (1989). Images and definitions for the concept of function. 
Journal for Research in Mathematics Education, 20 (4), 356-366. 

Zaslavsky, O., & Peled, I. (1996). Inhibiting factors in generating examples by 
mathematics teachers and student teachers: The case of binary operation. Journal 
for Research in Mathematics Education, 67-78. 

 


