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The primary goal of this study was to design and validate a conceptual assessment in an 

undergraduate linear algebra course. We work toward this goal by conducting semi-structured 

clinical interviews with 8 undergraduate students who were currently enrolled or had previously 

taken linear algebra. We try to identify the variety of ways students reasoned about the items 

with the intent of identifying ways in which the assessment measured or failed to measure 

students’ understanding of the intended topics. Students were interviewed while they completed 

the assessment and interview data was analyzed by using an analytical tool of concept image 

and concept definition of Tall and Vinner (1981). We identified two themes in students’ 

reasoning: the first theme involves students reasoning about span in terms of linear 

combinations of vectors, and the second one involves students struggling to resolve the number 

of vectors given with the number of entries in each vector. 
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Students from a variety of science, technology, engineering, and mathematics (STEM) 

disciplines are required to take linear algebra as part of their undergraduate mathematics 

coursework. Students typically struggle with the theoretical nature of linear algebra as it is often 

their first time grappling with abstract mathematical concepts (Wawro, Sweeney, & Rabin 2011). 

Students’ mathematical background up to this point is often primarily computational in nature; 

this often creates a barrier for students to overcome when they reach linear algebra (Carlson 

1993).  

Linear algebra is a pivotal course that includes mathematical underpinning of different 

STEM fields, but it is rife with challenges for students. According to Wawro (2011), “The 

content of linear algebra, however, can be highly abstract and formal, in stark contrast to 

students’ previous computationally-oriented coursework. This shift in the nature of the 

mathematical content being taught can be rather difficult for students to handle smoothly.” The 

abstract concepts of linear algebra are often taught in such a way that students do not find any 

connections between new linear algebra topics and their previous knowledge of computational 

mathematics (Carlson 1993). Researchers have worked to address this issue by developing 

inquiry-oriented instructional materials that help instructors and students bridge students’ 

informal and intuitive ideas with more formal and conventional understandings (Wawro et al., 

2013)  This work aims to move toward documenting the effectiveness of these materials in 

supporting students’ conceptual understanding of central topics in an introductory undergraduate 

linear algebra course. 

In this study we have designed an assessment that aligns with four focal topics typically 

covered in an introductory linear algebra course: (1) linear independence and span, (2) linear 

systems, (3) linear transformations, and (4) eigenvalues and eigenvectors.  We aimed to identify 

two questions for each of these four topics in order to develop an 8-item written assessment that 

could be completed by students in less than one hour. Based on findings from similar studies, we 

anticipate that we might see greater conceptual learning gains for students who learned in 



inquiry-oriented classrooms along with similar procedural learning gains (Rasmussen & Kwon, 

2007). Research questions for this proposal are:   

 What is the nature of student thinking elicited by the items on our assessment 

draft?   

 To what extent do the items accurately measure student thinking? 

 

Literature & Theoretical Framing 

Difficulty in teaching and learning of linear algebra during students’ first year of 

undergraduate study is well documented (Hillel, 2000; Sierpinski, 2000; Stewart & Thomas, 

2009). Students often struggle with fundamental concepts like span, linear dependence, linear 

independence, and basis (Stewart and Thomas, 2009). Additionally, the need to learn and 

coordinate modes of the description and representation of abstract concepts of linear algebra can 

function as a source of difficulty for students (Hillel, 2000). 

A theoretical construct that has been useful in many areas of mathematics education for 

making sense of students’ struggles as they work to make sense of a new idea is the notion of 

concept image and concept definition (Tall & Vinner, 1981). The key distinction here is that the 

ways in which students reason with and about a mathematical construct is often different from 

(and often at odds with) the definition of that construct which is accepted by the broader 

mathematical community.   

Researchers have been using the constructs of concept image and concept definition to 

analyze and understand students’ thinking and understanding of concepts for more than three 

decades (Wawro et al. 2011). Britton and Henderson (2009) made use of concept image and 

concept definition to analyze the conceptual difficulties of students in linear algebra, especially 

about vector space and subspace. We draw on Tall and Vinner’s (1981) notion of concept image 

and concept definition as an analytic tool for interpreting students’ responses to assessment 

items.   

 According to Tall and Vinner (1981) concept image is the “total cognitive structure that 

is associated with the concepts, which include all the mental pictures and associated properties 

and process” (Tall & Vinner, 1981 p.152). For a given concept, every individual creates an 

image or structure in their mind that helps the individual understand and remember that concept. 

This concept image may or may not be similar to other individuals’ images, and these images 

can be quite different from the formal definition of the concept. Moreover, Wawro et al. (2011) 

contend that concept image is not a static entity; it instead changes over the time and with new 

knowledge. Tall and Vinner (1981) use the term ‘formal concept definition’ to refer to the 

definition that is largely accepted by the mathematical community; they argue that this can be 

different from an individual’s ‘personal concept definition,’ which may change over the time and 

with new knowledge as is the case with one’s concept image.  For our analysis, we look for 

alignment between a student’s elicited concept image and the formal concept definition as 

evidence of understanding.  

 

Data Sources 
In this study, we conducted hour-long semi-structured clinical interviews (Bernard, 1988) 

with 8 university undergraduate students: 6 males and 2 females. One of the participants was 

taking linear algebra at the time of the interview, and the other participants had taken linear 

algebra within the last two years. The participants’ majors covered fields that included 



mathematics, education and economics. Participants had taken an average of four math classes 

after linear algebra. 

Every participant was asked to work through eleven assessment questions using a think-aloud 

interview protocol, in which the interviewer asked the student to read each item aloud and think 

aloud as he or she came to an answer.  The interviewer then asked follow-up questions as needed 

to understand the student’s reasoning in arriving at their answer. Each interview lasted for 

approximately one hour and was audio and video recorded. In this preliminary report, we 

consider participants’ responses to the first interview question, shown below in Figure 1. 

  
Figure 1: Assessment item focused on span 

 

We developed the assessment items used in this study by consulting past assessments 

prepared by 5 different mathematics faculty members at different universities, some of whom 

had been involved in the development of the IOLA materials, and others of whom had not. After 

identifying a set of questions related to each of our four focal topics, three mathematics faculty 

members from three different institutes were consulted to identify which items these experts felt 

focused on key ideas and had the potential to assess students’ conceptual understanding of these 

ideas. We modified our assessment according to experts’ initial feedback, and the assessment 

items to be used in interviews were selected after receiving a second round of feedback from 

these experts. We piloted the assessment with two students and made minor adjustments based 

on these students’ responses. This modified assessment was used for the remaining interviews.  

 

Methods of Analysis 

 In order to identify the kinds of student thinking elicited by our assessment items and the 

extent to which these accurately assessed student understanding, we conducted our analysis in 

four phases: (I) characterizing individual students’ concept images, (II) identifying themes across 

students, (III) documenting students’ written responses, and (IV) relating written responses to 

concept images elicited.  Phases I and II will allow us to identify the kinds of student thinking 

elicited by our assessment items.  Phases III and IV will offer insight to the extent to which the 

items accurately assessed students understanding.  Specifically, we look to see whether the 



assessment item accurately documents alignment between student’s concept image and the 

formal concept definition.  The phases of analysis are described in greater detail below.  

 

Phase I: Characterizing individual students’ concept images.  We developed a short 

description of each student’s concept image of span by first watching the video and transcribing 

each student’s interview response to question 1.  We then developed a list of themes that 

characterized how he/she thought about span and collected quotes that exemplified 

characteristics of the student’s thinking. 

Phase II: Identifying themes across students in how students reason.  In this phase, we 

grouped students according to the nature of their concept images. This helped us document 

themes in how students reason about the items. These groupings of students’ concept images 

were organized in a table to make it easier to identify trends in thinking.  

Phase III: Documenting written responses.  In this phase, we identify what students stated 

their final answer would be (and other answers they offered if they changed their mind) as well 

as the justification they offered for their answer(s).  This was identified by drawing on students’ 

written work as well as using audio/video data as needed in cases when the response was given 

orally but not written on the student pages. 

Phase IV: Aligning concept images with item responses. Students’ responses to each item on 

the assessment were aligned with their corresponding concept image. Each response was color 

coded to indicate whether a correct response corresponded to correct or incorrect reasoning and 

whether an incorrect response corresponded to correct or incorrect reasoning.  This will be used 

to assess the extent to which the item accurately measured what we intended.  

 

Findings 

After interviewing students and transcribing their interviews we analyzed the first 

assessment item to document students’ concept image of span.  In this preliminary report, we 

summarize themes we noted in students’ concept images on this item and speculate on what this 

tells us about what our item is measuring, as well as what it needs to measure.  In our 

presentation, we will provide a synopsis of all four phases of analysis for this item as well as 

other items on this assessment. 

  We identified two themes in students’ reasoning as evidenced by their responses: the 

first theme involves students reasoning about span in terms of linear combinations of vectors, 

and the second theme involves students struggling to resolve the number of vectors given with 

the number of entries in each vector.  (In addition, there was one student who didn’t remember 

what span was, so he answered all parts of the question as if it was just referring to the set of 

vectors V rather than the span of that set of vectors; using this reasoning the student gave correct 

answers for 1b and 1c.)   

Three of the students reasoned about all parts of the span assessment item in terms of the 

set of all possible linear combinations of the set of vectors given.  Unsurprisingly, these three are 

the students whose concept image was consistently well-aligned with the formal concept 

definition.  Interestingly, all three of these students offered rich geometric interpretations as part 

of their elicited concept image.  This suggests to us that geometric intuition might be an 

important aspect of the concept image needed for students to successfully reason through this 

item (and potentially other items) regarding span, even though the formal concept definition of 

span does not necessarily entail a geometric interpretation.  For example, one student Lewis 

explained his reasoning to question 1a: “A span is a linear combination or it would be any kind 



of linear combination of these two [pointing towards  ]… because they are linearly independent, 

so any span of these two vectors will be linear combination of the two vectors so reproduce a 

plane.”   

Four students struggled to resolve the number of vectors given with the number of entries 

in each vector, but they resolved this issue in a variety of ways. For instance, one student noted 

the vectors were in three dimensions and concluded (incorrectly) that the span must be 3-

dimensional, meaning that no vector in R
3
 can be outside of the span. Another student, Beth, 

struggled with the same issue, but resolved it correctly by reasoning that “each vector has three 

entries in its column … that means that it is in the third dimension, I think there is only two 

vectors though, I think I need a third vector in order for this to actually span the third dimension 

and so since there are two it will span just the second dimension and the second dimension will 

be a plane so then it might actually just be a plane.”  One student resolved the issue by putting 

the vectors of the matrix V into a matrix, row reducing the matrix, and counting the number of 

pivot columns.  Since there were two of something, he felt the span should be either two points 

or two lines, but he wasn’t sure which because he didn’t have a geometric interpretation.  The 

final student concluded that the span of V would be two planes because each vector represents a 

plane.  Interestingly, these students tended to give a linear combination of the vectors of V on 

part b of the question when asked for an example of a vector that was in the span (though some 

had interesting limitations on how those combinations should be formed, e.g. thinking the 

coefficients had to be integers).  This suggests to us that a significant source of difficulty for 

students developing a rich concept image of span lies in coming to think simultaneously about 

all possible linear combinations of a set of vectors.  

 

Implications/Future Work 
 Our findings suggest two things about the design of an assessment item focused on 

documenting students’ understanding of span.  First, is that we need to find a way to assess 

students’ strategies for resolving differences between the number of vectors and the number of 

entries in each vector.  Second, we likely want to include separate prompts that offer insight into 

students understanding of linear combinations and their understanding of span as the set of all 

possible linear combinations.  We have endeavored to assess the latter using a geometric 

approach.  Extending our analytic strategy, we intend for our analysis of other items to similarly 

inform aspects of student understanding that need to be measured by our assessment. 

 

Questions for Audience 
● When we conduct quantitative analysis, how do we account for the relatedness of 

subparts of questions (e.g. 1a, 1b, 1c)?  We view this as a strength of the assessment, but 

are unsure of how to account for it methodologically. 

● What is the contribution of this work?  Is it methodological (is the method of refining 

assessment items new/novel/worth writing about)? 

● How can we think about assessing the quality of the assessment as a whole rather than 

item by item?  
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