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The definite integral is an important concept in calculus, with applications throughout 

mathematics and science. Studies of student understanding of definite integrals reveal several 

student difficulties, some related to determining the sign of an integral. Clinical interviews of 5 

students gleaned their understanding of “backward” definite integrals, i.e., integrals for which 

the lower limit is greater than the upper limit and the differential is negative. Students initially 

invoked the Fundamental Theorem of Calculus to justify the negative sign. Some students 

eventually accessed the Riemann sum appropriately but could not determine how to obtain a 

negative quantity this way. We see the primary obstacle here as interpreting the differential as a 

width, and thus an unsigned quantity, rather than a difference between two values. 
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In this preliminary report, we examine the role of the differential in the “backward” definite 

integral, ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏
 where 𝑎 < 𝑏. The definite integral is a fundamental concept in calculus, with 

applications throughout mathematics and science. Studies of student understanding of definite 

integrals reveal several difficulties (Bajracharya, Wemyss, & Thompson, 2012; Bezuidenhout & 

Oliver, 2000; Jones, 2013; Lobato, 2006; Sealey, 2006, 2014; Sealey & Oehrtman, 2005). The 

existing literature on definite integrals tends to support a specific approach to developing an 

understanding of the definite integral, specifically by recognizing it as the sum of infinitely small 

products, which are formed via Riemann sums (Jones, 2013; Meredith & Marrongelle, 2008; 

Sealey, 2008, 2014). Additionally, Sealey (2006) and Jones (2013) point out that recognizing the 

Riemann sum as a sum of products of the function value 𝑓(𝑥) and the increment on the x-axis 

(∆x) is necessary for students to understand the meaning of the area under the curve, which is, 

arguably, the most prominent metaphor/interpretation of the definite integral. On the other hand, 

reasoning about a definite integral as area under the curve may limit students’ ability to apply the 

integral concept (Norman & Prichard, 1994; Sealey, 2006; Thompson & Silverman, 2008).  

Another aspect of the definite integral that leads to student difficulties is the meaning of the 

differential itself. Students treat the differential as an indicator of the variable of integration 

rather than a fundamental element of the product in integration of both single- and multivariable 

functions (Hu & Rebello, 2013; Jones 2013). This could stem from a failure to understand the 

product layer of the integral (Sealey, 2014; von Korff & Rebello, 2012). Other recent work has 

shown students treating dx as a width rather than a difference or change, both for positive and 

negative integrals (Bajracharya et al., 2012; Hu & Rebello, 2013; Wemyss, Bajracharya, 

Thompson, & Wagner, 2011). 

Interpreting the sign of the integral has been shown to be difficult for students. In particular, 

definite integrals that have a negative result are of particular difficulty geometrically. Students 

often do not treat the area as a negative quantity, effectively associating it with spatial area rather 

than the quantity represented by the product of 𝑓(𝑥) 𝑑𝑥. This is true for integrals for which 𝑓(𝑥) 

is negative, i.e., below the x-axis (Bezuidenhout & Oliver, 2000; Lobato, 2006), as well as those 

for which dx is negative, i.e., the direction of integration is in the negative direction (Bajracharya 

et al., 2012). The former type of negative integral is more common, but the latter also has 



relevance to applications in physical situations (e.g., finding thermodynamic work during the 

compression of a gas). Bajracharya et al. (2012) found that students could justify the sign of a 

negative integral represented graphically by overlaying a physical context on the graph.  

The notion of dx as a signed quantity is somewhat controversial, depending on the way one 

defines the differential. The perspective here, which is consistent with applications in physics 

and other fields, is that dx is defined as an infinitesimal change in the quantity x, akin to the limit 

of the change in x for the products in a Riemann sum: ∆𝑥 =
𝑏−𝑎

𝑛
;  𝑑𝑥 = lim

𝑛→∞

𝑏−𝑎

𝑛
. This is 

consistent with von Korff & Rebello (2012), who argue that infinitesimal quantities and 

infinitesimal products are important for an understanding of the meaning of definite integrals. 

Generally the sign of these quantities is not of interest, since b>a in most cases. However, if 

b<a, then ∆x, and thus dx, are negative. In Stewart’s (2007) most recent text, he explains that the 

backward integral is negative because ∆x is negative, but does not explicitly refer to dx as a 

signed quantity.  

Given the prior work in this area, we wanted to explore the facets of students’ concept image 

(Tall & Vinner, 1981) of the definite integral that apply to the sign of the integral. In particular, 

the role of the differential in a backward integral, ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏
, is crucial in interpreting the sign. 

We suspected that students would not recognize the fact that the differential would be negative 

for backward integrals. Thus the backward integral had the potential to illuminate students’ 

understanding of the meaning of differentials, definite integrals, and to some extent, the Riemann 

sum, beyond what has been seen in the literature to date. 

 

  Methods 

 

During clinical interviews, students were asked a series of questions about the relationship 

between forward and backward integrals. As this was a pilot study, we chose to interview five 

students at various levels: two second-semester freshmen (both double majors in math and 

physics and concurrently enrolled in a second-semester calculus course), one junior math major, 

one senior math major, and one first-semester Ph.D.-level graduate student in math/math 

education. Interviews were videotaped and transcribed. The interview subjects were volunteers 

who were either former students or teaching assistants of one of the authors. Interviewees 

received a $10 gift card at the conclusion of the interview. Prior to the interviews, we developed 

an interview protocol and agreed upon the order in which the questions would be asked of the 

students, starting with the open ended general expressions shown below and concluding with a 

physical example. In each case we gave the forward integral first, then asked about the backward 

integral of the same expression. 

1. General expressions:  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 and ∫ 𝑓(𝑥)𝑑𝑥

𝑎

𝑏
 

2. Specific expressions:  ∫ 2𝑥 𝑑𝑥
3

1
 and ∫ 2𝑥 𝑑𝑥

1

3
 

3. Physical scenario:  Work required to stretch a spring, ∫ 𝐹 𝑑𝑥
𝑥2

𝑥1
, where 𝐹 = 𝑘𝑥 

 

Data and Results 

 

All five students were able to use the Fundamental Theorem of Calculus (FTC) to justify 

why ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= − ∫ 𝑓(𝑥)𝑑𝑥

𝑎

𝑏
. Specifically, they were able to state that ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
= 𝐹(𝑏) −

𝐹(𝑎), where 𝐹(𝑥) is the antiderivative of 𝑓(𝑥), and then that ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏
= 𝐹(𝑎) − 𝐹(𝑏), which 



would have the opposite sign. Graphically, the students had much more difficulty. In the 

preliminary analysis, several student difficulties were observed; two of these are discussed in 

more detail here. We are still in the process of analyzing the data and determining plans for 

future data collection.  

 

Student thinking about the differential 

Most of the students were able to think about dx in at least two ways. Many of the students 

mentioned that the dx refers to the variable of integration, and most also were able to discuss the 

dx as the width of individual rectangles under a curve. Subsequent data analysis will note which 

concept image for dx was evoked in different circumstances, which concept image was evoked 

first, and if/when the students changed the way in which they thought about the dx. Of particular 

interest to us is whether or not the students can conceive of dx as a signed quantity, as either a 

negative width, or as a negative value obtained from 𝑥2 − 𝑥1. According to our preliminary 

analysis, none of the students thought about dx as a signed quantity on their own accord, but with 

prompting from the interviewers, some were able to do so.  

Anna, a senior math major, had no trouble thinking about ∆x as a negative width, but did not 

seem comfortable thinking about dx being positive or negative. Her explanation of why the 

backward integral was negative was because the width was negative, and explained, “You’re 

going to have that negative width times a positive value, which is going to give you a negative 

number, so you’re going to get the addition of a bunch of negative numbers.”  Much later in the 

interview, one of the interviewers asked Anna if it was possible for dx to be positive or negative, 

and Anna responded, “I’ve actually never thought of that. So I’m not sure. I mean I guess it 

could, but I just always viewed the dx as the indication of what term to integrate to. So I’m not 

actually sure, I guess.” 

Similar to Anna’s response, Matt, a junior math major, eventually was able to think about Δ𝑥 

as a negative quantity and described dx as the limit as Δ𝑥 approached zero. After many attempts 

from Matt, the interviewer asked him if dx could be negative. His response indicated that he was 

not confident in his answer, but responded, “That’s probably the hidden spot that I couldn’t 

figure out before. Yeah I would say that this dx would be negative (from a to b) and this one 

would be positive (from b to a) because it’s approaching 0 so this (from a to b) would still stay 

positive like stay right north of 0. And this one (from b to a) would stay under, yeah I’m going to 

say this dx here (from b to a) is negative and this dx is a positive dx (from a to b), and I guess 

that’s where it’s hidden and that's what their difference is? I don’t know.” 

Nick, a mathematics graduate student, focused his explanation as to why the backward 

integral was negative on direction. He said that the dx represents a change, and that change 

implies motion. He seemed to be thinking about the variable x representing time, and mentioned 

more than once that the backward integral would be like playing a movie in reverse. On another 

note, Nick spent a great deal of time during the interview talking about the two terms that made 

up the product in the definite integral, namely the 2x and the dx in ∫ 2𝑥 𝑑𝑥
1

3
. He knew that when 

multiplying two quantities to obtain a negative result, exactly one of the terms multiplied must be 

negative. He debated if the x turned negative or the dx turned negative. He “voted” for the dx to 

be negative, but didn’t seem confident of his answer. He said to be sure, he would have to go 

back to the definition of ∆𝑥 in the textbook to see if he was right.  

 



Using area under the curve and the Fundamental Theorem of Calculus 

All of the students seemed comfortable discussing the integral as the area under the curve. 

While they were able to consider the total area as the sum of small rectangles (or trapezoids), 

their calculation of the total area ended up being an interesting part of our analysis.  

Sara, a sophomore mathematics and physics double major, evaluated ∫ 2𝑥 𝑑𝑥
3

1
 by finding the 

area of the large triangle (Fig. 1a) and subtracting the area of the small triangle (Fig. 1b) to 

obtain the desired area (Fig. 1c). She noticed that these calculations corresponded to the values 

she obtained when applying the FTC to the same problem:  the area of the large triangle 

corresponded to 𝐹(3), and the area of the small triangle to 𝐹(1). Then, when computing 

∫ 2𝑥 𝑑𝑥
1

3
, she reversed the order of her subtraction, subtracting the area of the large triangle (Fig. 

1a) from the area of the small triangle (Fig. 1b), and said, “But I’m not sure why that order is. I 

mean I know why for the integral [symbolically] because it’s written that way, but if you were to 

solve this geometrically, I don’t know why you would change the order of the subtraction.”   

 

   
Figure 1:  Sara’s method of computing the area 

Matt also was able to justify the relationship between the forward and backward integral 

symbolically using the FTC, but also struggled to justify the result graphically. When computing 

the area under the function 2x between 𝑥 = 1 and 𝑥 = 3, he recognized it as a trapezoid. Instead 

of using Sara’s method of subtracting the smaller triangle from the larger triangle (Fig. 1), Matt 

added the area of the lower rectangle (Fig. 2a) to the area of the upper triangle (Fig. 2b) to obtain 

the total area (Fig. 2c).   

 

   
Figure 2:  Matt’s method of computing the area 

Matt’s solution is perfectly valid, but did not mimic the calculations from the FTC, as did 

Sara’s method. Matt tried several different ways to graphically justify the negation of the 

backward integral but was never completely content with his justification. He noted that the 

backward integral represented the same area as the forward integral, but the backward integral 

would have to be negative since the limits were reversed “because I already know that, like as a 

fact, that it’s a negative if you want to flip the bounds.”  He did state that he believed there 

should be a graphical justification, but he did not know what one would be.  

We do not mean to imply that Sara’s solution was in some way better than Matt’s, but simply 

note the connection to the FTC in Sara’s solution. In fact, both Sara and Matt used solutions that 
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sidestep the need for thinking about the Riemann sum and the dx specifically. Near the end of 

Sara’s interview, we pushed her to consider each rectangle under the curve, which she had 

described at the beginning of her interview. Sara was comfortable with 𝑓(𝑥) being negative or 

positive, depending on if it was above or below the x-axis, but said, “Well no, I don't think dx 

would ever be negative because it’s just a distance, it’s not like an actual value.” 

 

Discussion 
 

Students recognized the negative value of the backward integral based on the 

FTC/antiderivative difference formula, but when asked for a geometric interpretation, most said 

they hadn’t thought about it before and had difficulty making a reasonable interpretation on their 

own. Most students’ graphical explanation of why the backward integral yields a negative result 

seemed to be invoking the direction of the integration, treating the area as a macroscopic 

negative quantity, but failed to recognize the role of the differential in generating that sign. We 

know from the literature and our own prior research (Bajracharya et al., 2012; Sealey, 2006; 

Thompson & Silverman, 2008) that students often lack an understanding of why or how area 

under a curve is a representation of a definite integral. Our subjects, who we acknowledge may 

be more advanced than the average calculus student, did not seem to have this difficulty and 

were able to describe the definite integral as the sum of the areas of very small rectangles, and 

adequately described the product layer that makes up these small rectangles. They could all 

explain that 𝑓(𝑥) represented the height of the rectangles and that ∆𝑥 (and sometimes dx) 

represented the width of the rectangle.  

However, thinking about the backward integral adds another level of difficulty to describing 

the definite integral in terms of area. The students did not always recognize that ∆𝑥 and dx could 

be negative values. Instead of thinking about ∆𝑥 as a difference, (e.g. as (𝑥𝑖+1 − 𝑥𝑖) or as 
𝑏−𝑎

𝑛
), 

they initially thought of Δ𝑥 as the width of a rectangle, and usually assumed it was always a 

positive value.  

We certainly do not mean to imply that Δ𝑥 and dx should never be thought of as a width. In 

fact, research by Hu and Rebello (2007) suggested that dx-as-width is an important perspective 

for problem solving in physics. Instead, we emphasize the necessity for being able to think about 

dx as positive or negative widths and the change between two quantities. With moderate 

prompting, most of our research subjects were able to do this, and our future research will 

examine what type of instruction or intervention enables students to make this connection.  

 

Discussion Questions 

 

1. We have some examples in physics where one might consider the backward integral 

(stretching/releasing a spring). Are there other examples in mathematics where it makes 

sense to consider ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏
? 

2. Where do you think this difficulty might be best addressed?  Calculus 1?  Calculus 1?  Real 

analysis?  Physics? 

3. Student functional understanding of the differential seems to be the underlying cause of 

several difficulties with students (in our work as well as other studies in the literature). Do 

you have recommendations for why and/or how this can be improved?  
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