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Optimization problems in first semester calculus present many challenges for students. In 
particular, students are required to draw on previously learned content and integrate it with new 
calculus concepts and techniques. While this can be done correctly without considering the 
graphical representation of such an optimizing function, we argue that consistently considering 
the graphical representation provides the students with tools for better understanding and 
developing their optimization problem-solving process. We examine seven students’ concept 
images of the optimizing function, specifically focusing on the graphical representation, and 
consider how this influences their problem-solving activities. 
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Word problems are notoriously challenging for students - not a surprise to anyone who has 
ever been a student or an instructor of mathematics. Slightly obscuring the mathematics involved 
by describing a situation using everyday “nonmathematical” language adds an extra level of 
difficulty. In first semester calculus, students have many opportunities to solve word problems. 
Here we examine optimization problems, which require students to read a short description of a 
scenario in which a quantity needs to be maximized or minimized. This quantity may be an area, 
a volume, a cost, a distance, an amount of material, or a production output. To solve the problem, 
the student must construct a function for this quantity (we call this the optimizing function) and 
then use calculus techniques to find the absolute maximum or absolute minimum of the function 
in the appropriate domain. White and Mitchelmore (1996) found that students are much more 
likely to be able to find a desired maximum or minimum when the function is given explicitly in 
the problem than they are when the problem is stated in the form of a word problem and the 
students must first construct the appropriate function. For this reason, we are interested in 
studying how students construct the optimizing function and how this influences their 
understanding of the rest of the problem. 

Our research is guided by the following two research questions: 1) What facets of learners’ 
concept images influence their construction of the optimizing function when solving calculus 
optimization problems? and 2) How can this shed light on teaching interventions that could 
support conceptual development of optimization? 

LaRue and Engelke Infante (2015) identified six key mathematical concepts that play a role 
in students’ understanding of optimization – specifically their construction of the optimizing 
function. These six mathematical concepts are: variables, function notation, function 
composition, properties of rectangles and the relationships between them, the role of the 
optimizing function, and the graphical representation of the optimizing function. Here, we 
examine in greater depth the students’ concept images of the optimizing function, focusing on 
those aspects related to the ability to transition between the graphical and algebraic 
representations of the optimizing function throughout the problem-solving process. We observed 
that students’ inclination to consider the graphical representation of the optimizing function was 
directly related to their ability to explain the reasoning for their work and to solve challenging 
optimization problems. 



 
Literature Review 

 
Graphical interpretations of functions can convey information about the functions in a single 

image. The graph of a function can benefit students because it allows them to consider the 
overall behavior of the function, rather than focusing on individual elements. Students, however, 
are often reluctant to consider the graphical representation of a function, and when they do, they 
frequently have trouble interpreting the information correctly (Eisenberg, 1992). Sfard (1992) 
noted, “Graphs provide another way of thinking about functions, but there is almost no 
connection between a graph and the underlying formula” (p. 75). Knuth (2000) reported, “three 
fourths of the students chose an algebraic approach as their primary solution method, even in 
situations in which a graphical approach seemed easier and more efficient than the algebraic 
approach” (p. 504). Even (1998) found that students have trouble solving problems that require 
them to move seamlessly between different representations of functions. 

Arcavi (2008) noted that analytic techniques are frequently “devoid of meaning” for students 
and suggests having students examine the graph of a function prior to using analytic techniques 
to determine information about the function (p. 9). He suggested using a dynamic graphing tool 
that allows the students to watch the function being drawn and to see the relevant information 
about the function at various points on the function. He argued, “a dynamical graphical model 
highlights aspects of the situation that were not as salient had we investigated it alone or even by 
modeling it symbolically” and gave the example of using dynamic graphs to examine the 
relationship between the perimeter of a rectangle and the length of one its sides and the 
relationship between the perimeter of a rectangle and the length of its diagonals (p. 5). 
 

Theoretical Perspective 
 

Tall and Vinner (1981) define a learner’s concept image as ‘all the cognitive structure in the 
individual’s mind that is associated with the given concept’ (p. 1). Because the concept image 
exists in the mind of the student, and we know that students do not always have correct 
understandings of mathematical concepts, this cognitive structure may be incomplete, incorrect, 
or logically inconsistent. When a need arises, the parts of the concept image that are directly 
related to the need are called upon, but the rest of the concept image remains dormant, ready to 
be accessed if needed, but not until then. This means students may have conflicting information 
in their concept images without realizing it, and unless the two logically inconsistent parts of the 
concept image are evoked simultaneously, the student may never realize something is wrong.  

Carlson and Bloom’s (2005) problem-solving framework allows us to describe students’ 
activity as they solve optimization problems. The framework is divided into four main phases: 
orienting, planning, executing, and checking. In the orienting phase, the student deciphers the 
problem and assembles the tools he or she thinks may be required. In the planning phase, the 
student uses conceptual knowledge to determine an appropriate course of action, which is then 
implemented during the executing phase. Finally, during the checking phase, the problem solver 
goes back to the original problem to see if the answer makes sense. 

During the orienting phase, students will likely focus on algebraic aspects of the problem as 
they assemble useful formulas and equations. In the planning phase, we would expect students to 
work to construct an appropriate optimizing function. It is during this phase that we would like to 
see them consider the graphical representation of the function as a tool for quickly recognizing 



the algebraic techniques they need to employ to solve the problem. Considering the graphical 
representation should help them determine that the key next steps are to differentiate, find critical 
points, and use either concavity or the increasing and decreasing nature of the graph to verify 
that they have solved the problem. Much of the executing phase is computational in nature and 
will focus on the algebraic representation of the function.  Finally, during the checking phase, the 
graphical representation of the optimizing function affords students the opportunity to verify that 
their answer makes sense. 
 

Methods 
 

Data was collected through a series of semi-structured interviews with first semester calculus 
students at a large state university in the United States. Interviews were conducted during the 
summer and fall semesters of 2014. Four students (Franz, Sam, Tracy and Lars) were 
interviewed during the summer of 2014 and three students (Ashod, Brandi, and Cy) were 
interviewed during the fall of 2014. In both cases, the students were interviewed after their exam 
covering optimization and just before their final exam for the class. The students were selected 
on a volunteer basis and self-reported average to strong mathematical backgrounds. All 
interviews were video recorded and transcribed for analysis. We used open and axial coding to 
isolate and further analyze portions of the interviews associated with the graphical interpretation 
of the optimizing function. 

The students were asked to solve the following optimization problem, which is standard in 
most first semester calculus classes: A rectangular garden of area 200 ft2 is to be fenced off 
against rabbits. Find the dimensions that will require the least amount of fencing if a barn 
already protects one side of the garden. We refer to this problem as the garden problem. After 
solving this problem, the students were asked questions about the connection between the area 
and the perimeter of rectangles and then were asked to solve an additional optimization problem 
involving the volume and surface area of a 3D object. The students interviewed in the summer of 
2014 were asked to examine a graph of the optimizing function associated with the second 
optimization problem, while the students in the fall of 2014 were asked to examine a graph of the 
optimizing function associated with the garden problem and with the second problem. In both 
cases, the graphs consisted of two unlabeled axes and a rough sketch of the function. The 
students were asked to mark and label important information on the graphs. 

 
Results 

 
The seven students interviewed had varying levels of success when asked to transition from 

the algebraic expressions of the optimization problem to the graphical representation. We have 
grouped them based on the strength of their graphical connections, and we discuss these below. 
 
No Graphical Connections: Franz and Ashod 

Franz and Ashod did not have well-developed concept images of the optimizing function. 
Ashod constructed his optimizing function with the motivation of finding something to 
differentiate and set the derivative equal to zero because, “when it equals zero, that’s when you 
know you have the least amount.” His only rationale for deciding how to construct such a 
function, however, was, “whatever they give you, use the other equation.” When he was given a 
graph of the function he had constructed and was asked to explain how the answer to the 



problem related to the graph, he said they were not related, and he was unable to correctly mark 
the place where his answer belonged on the graph (see Figure 1). He knew he had been using the 
derivative to solve for the answer, and since “the graph of the derivative looks completely 
different from the graph of the original equation,” he did not think his answer related to the 
original graph at all. He was able to explain that the first derivative always tells you whether the 
graph is “positive or negative or increases or decreases,” but even though this was part of his 
concept image for the first derivative of a function, he did not relate this information back to the 
graph of the optimizing function. Thus, Ashod’s concept image for the optimizing function was 
developed just enough to allow him to be able to solve the problem and get an answer, but not 
enough for him to be able to move from the algebraic interpretation to the graphical 
interpretation. 

Franz was unable to make any connections to the graphical representation of a function when 
solving the garden problem. Initially, he tried to set the optimizing function equal to zero and 
solve for x, but when he got a negative answer, he realized that wouldn’t work. His next attempt 
was correct (setting the derivative equal to zero), but when he was asked why he was doing that, 
he said, “it’s a standard thing that we do,” and, “I have no idea. I just know that is the 
minimum.” The interviewer repeatedly encouraged him to make connections to the graph, but 
with no success. When he was asked to label the graph of the optimizing function, he decided 
where to put his answer based on where he thought that number would generally be located on a 
number line (see Figure 1), completely disregarding the shape of the graph. His responses 
indicate that his concept image for the optimizing function contained little more than some basic 
facts about what to do with it, without any links to the graphical representation of the function or 
the context of the problem. 

 

 
Figure 1. Franz, Brandi, and Ashod mark the location on the graph where they believe the 
critical number belongs on the axis. Note that all three students placed the mark somewhere other 
than below the obvious maximum or minimum. 
 
Limited Graphical Connections: Cy and Lars 

Cy and Lars were able to use the language of graphs to discuss the algebraic work they had 
done, but they had trouble making some connections initially. Cy knew there was a connection 
between the graph of the optimizing function and the algebraic expressions he was working with. 
Early in his explanation, he stated that the first derivate indicates where “the slope equals zero” 
and the second derivative indicates the concavity, signifying whether there is a maximum or 
minimum. However, Cy had a lot of difficulty interpreting the graph when it was first presented 
to him. Like Ashod, he was confused because he had used the derivative to solve for his answer, 
and was thus did not understand how his answer could have something to do with the graph of 
the original function. 



Cy recognized that making the transition from the algebraic representation to the graphical 
representation made sense and was surprised that he was having trouble. He said, “I don’t know 
why this is so hard. This seems like something very easy.” Later in the interview, he said, “It’s 
weird to like make the jump from numbers into a graph sometimes. In some situations, the 
numbers are really just a stand in for the work I’m doing in my head with graphs, but in this 
situation, it’s more, the numbers are all I really ever thought about with this.” This is especially 
interesting, because he used the language of graphs when he was explaining his work, but was 
still unable to translate that to an actual graph. Eventually, with some prompting from the 
interviewer, he was able to make sense of the graph and connect it to the problem.  

Lars brought up graphs without being prompted. He had trouble constructing his optimizing 
function, but explained that all of the information could be put on a graph. Unfortunately, even 
though he knew that there was a graphical component to the optimization problem, he did not 
know what function corresponded to the graph. He could not label the axes correctly or give any 
sensible information about what information could be obtained from the graph. At one point he 
thought the two axes corresponded to the two sides of the rectangular garden, and at another 
point he thought the two axes corresponded to one side of the garden and the area of the garden. 
Eventually, after a lot of intervention from the interviewer, Lars was able to construct an 
appropriate optimizing function and correctly relate it to the graphical representation. So even 
though he began with the recognition that he could use a graph to figure out how to solve the 
problem, he did not know what the graph should represent. Once he realized that the graph 
should represent the amount of material needed for the fence, he was able to complete the 
problem. 

 
Strong Graphical Connections: Tracy, Sam and Brandi 

Tracy began the problem by trying to recall how she had done similar problems, but quickly 
became confused and unsure how to proceed. She knew that she was trying to find the minimum 
of a function and that she could find that by taking the derivative, saying, “the derivative would 
just be the rate of change of the graph, so the best I can figure out of that is finding the critical 
values in the derivative would help you find the minimums because you look at areas of increase 
and decreases.” When she was asked why she wanted to set the derivative equal to zero, she said, 
“When the derivative is zero? Doesn’t it just have a horizontal tangent line which means it has to 
have that shape, the parabola shape?” 

Unfortunately, even though she knew this, she did not know what function she should be 
differentiating. After a lot of intervention from the interviewer, she was able to recognize that for 
the garden problem, she was trying to construct a function representing the amount of material 
used to construct the fence. Once she figured that out, she was able to solve the rest of the 
problem easily, because she had such a strong understanding of the connections to the graphical 
representation of the optimizing function. 

Sam very quickly set up and solved the garden problem with little difficulty. He explained, 
“we take the derivative of that function in order to find the points, uh, where slope equals zero in 
order to tell us where it stops increasing, decreasing, and that’ll tell us where the minimum or 
maximum values are.” However, as the interview progressed, he realized that he did not 
understand how the optimizing function, and particularly the graph of the optimizing function, 
related to the problem. He said, “Like how this fence has a minimum value that relates on a 
graph that’s a function of a different function.” He recognized that his initial equation 
represented the amount of fence of the garden, but once he eliminated one of the variables and 



constructed a single-variable function, he could not relate this “new” function to the amount of 
fencing. Thus, he knew graphical properties about functions in general, but he did not understand 
how the graph was related to his original algebraic expression. 

When Brandi was asked to explain her work, one of her first responses was, “Cause like the 
amount of feet that could be used, if you think about it on the graph.” She immediately made the 
connection to the graphical representation of the optimizing function, indicating that it is a well-
developed part of her concept image. She was able to talk about this clearly and comfortably 
about the relationship between the graphical representation and the algebraic representation as 
she explained her thought processes, yet when she was presented with the actual graph, she had 
trouble marking the correct place for her answer, . She placed it where she thought  
would fall on the axis (see Figure 1), not directly below what was clearly the minimum of the 
function. On a theoretical level, she appeared to understand the connection, but when she had to 
apply what she knew to an actual graph, she still had some difficulty. 

Tracy, Sam, and Brandi had more developed understandings of the connections than the 
other students, and they moved more flexibly between the algebraic and graphical 
representations. All three, however, still had some difficulties with the two representations. 
 

Discussion 
 

The students in this study were not naturally inclined to consider the graphical representation 
of the optimizing function when solving optimization problems. When they did consider the 
graphical representation, most did so incorrectly or with an incomplete understanding of how it 
was related to the algebraic representation and the work associated with it. 

In the planning phase of Carlson and Bloom’s (2005) problem-solving framework, the 
student determines an appropriate course of action for solving the problem. Ideally, for the 
garden problem, students would consider that they need to construct a function representing the 
amount of fencing required for an area of 200ft2. They would then consider the graphical 
representation of this function and recognize that since they need to find the minimum, they 
should expect their function to be concave up at the value they find. 

During this phase, some students recalled similar problems and simply attempted to duplicate 
a familiar solution path. Franz, Ashod, Lars, and Tracy all began this way. When this didn’t 
work for Lars and Tracy, they were (with some encouragement) able to fall back on their 
knowledge about the graphical representation of the optimizing function to figure out how to 
move forward. Franz and Ashod were able to solve the first problem without intervention, but 
both had trouble solving the second more difficult optimization problem. They did not have any 
understanding of the graphical representation of the function to fall back on and were unable to 
determine how to move forward. Tracy did have this understanding, but she had so much trouble 
with the 3-D aspect of the second problem that she was unable to solve the problem without a lot 
of help. However, once she reached an answer, she was able to clearly explain what her answer 
meant in the context of the problem, suggesting that if she had a stronger concept image of 
surface area and volume, she would have been able to solve the problem on her own. Lars was 
able to solve the second optimization problem with ease, because once he had reasoned through 
the connection to the graphical representation once, he was able to draw upon this to make sense 
of the next problem. 

The other three students, Brandi, Cy, and Sam, had some difficulties, but all began the first 
problem with well-developed concept images for the optimizing function that included at least 



some understanding of the graphical representation of the function. They began solving the 
problem by referencing this graphical connection and were able to give explanations other than 
“I don’t know,” or “because this is how my teacher did it” when they were asked why they were 
beginning the problem that way. Additionally, when they attempted to solve the more difficult 
second optimization problem, they were all successful. For these students, a well-developed 
concept image for the optimizing function, including at least some understanding of the 
connection to the graphical representation, led to more success in solving and understanding 
optimization problems. 

Thus, we see that the graphical representation of the optimizing function has an important 
role to play in helping students develop their understanding of optimization in general. Because 
existing literature and our current research tell us that most students generally are not likely to 
move fluidly between the algebraic and graphical representations, we must work to find ways to 
encourage students to make these connections. 

 
Conclusion 

 
We found that even when students were able to accurately describe the connection between 

the algebraic and graphical representation of the optimizing function, they often had more 
difficulty when they were asked to put this information to use when dealing with an actual sketch 
of the graph. We suggest asking the following questions when teaching and/or assessing students 
on optimization problems. 

 
1. Identify your optimizing function. What does it represent? How do you know it is a 

function?  
2. What is the realistic domain of your optimizing function? What is the realistic range? 
3. Draw a rough sketch of your optimizing function. Label the axes appropriately. 
4. Consider an ordered pair (a,b) on the function. In the context of the problem, what does a 

represent? What does b represent? In the context of the problem, what is the relationship 
between a and b? 

5. Mark the point in the domain of the function that corresponds to the answer you hope to 
find (or have already found) using algebraic techniques. 
 

These questions are designed to encourage the students to think about and make the 
connections between the different representations of the optimizing function and to help them 
further develop their concept image of the optimizing function. Making these connections will 
help the students set up and solve these problems, particularly during the planning and checking 
phases of the problem-solving process. 

In our study, the graphical representation of the optimizing function was only a portion of the 
interview protocol, but it has emerged as a significant theme in our research. We believe that 
there is room for a more targeted, small-scale research project focused on examining the role that 
the graphical representation of the optimizing function plays in students’ work with optimization 
problems. The above questions could be a good starting point for such a project. 
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