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The purpose of this paper is to explore the role of symbolizing and brokering in fostering 
classroom inquiry. We characterize inquiry both as student inquiry into the mathematics and 
instructor’s inquiry into the students’ mathematics. Disciplinary practices of mathematics are 
the ways that mathematicians go about their profession and include practices such as 
conjecturing, defining, symbolizing, and algorithmatizing. In this paper we present examples of 
students and their instructor engaging in the practice of symbolizing in four ways. We integrate 
this analysis with details regarding how the instructor serves as a broker between the classroom 
community and the broader mathematical community.   
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Creating and sustaining engaged classrooms in which students learn particular mathematics 
and develop positive mathematical dispositions that transcend course-specific concepts is a 
daunting and challenging endeavor. For instructors, these challenges include (a) creating or 
selecting tasks that afford opportunities for students to learn mathematics by doing mathematics, 
(b) leading and facilitating small group and whole class discussions in which student ideas are 
shared and valued, and (c) relating students’ intuitive, informal, or blossoming ideas to 
conventional and more formal mathematics. We refer to classrooms where these challenges are 
realized as “inquiry-oriented.” Prior research (e.g., Laursen, Hassi, Kogan, & Weston, 2014; 
Rasmussen, Kwon, Allen, Marrongelle, & Burtch, 2006) points to the power of engaging 
students in typical mathematical practices through inquiry in undergraduate mathematics. As 
such, the need exists to further investigate and understand the relationships between what 
students do, what the instructor does, and the role of tasks in these inquiry-oriented classrooms. 
This report, using symbolizing in an inquiry-oriented linear algebra classroom as a case study, 
makes a contribution toward this need. 

 
Literature and Theoretical Framing 

We operationalize the notion of inquiry, using the definition put forth by Rasmussen and 
Kwon (2007), both in terms of what students do and what instructors do in relation to student 
activity. On the one hand, students learn mathematics through inquiry as they work on 
challenging problems that engage them in typical mathematical practices, which we refer to as 
disciplinary practices. Disciplinary practices of mathematics are the ways that mathematicians go 
about their profession and include practices such as defining, theoremizing, symbolizing, and 
algorithmatizing (Rasmussen, Wawro, & Zandieh, 2015; Rasmussen, Zandieh, King, & Teppo; 
2005). On the other hand, instructors engage in inquiry by listening to student ideas, responding 
to student thinking, and using student thinking to advance the mathematical agenda of the 
classroom community (Rasmussen & Kwon, 2007). 
	  
Brokering 

In addition to characterizing what constitutes disciplinary practices, over the years we have 
also developed and refined the work of instructors in leading inquiry-oriented classrooms (e.g., 
Rasmussen & Marrongelle, 2006; Rasmussen, Zandieh, & Wawro, 2009; Wawro, 2014; Zandieh 



& Rasmussen, 2010). As part of this work, we adapted the idea of broker from the communities 
of practice literature (Lave & Wenger, 1991; Star & Griesemer, 1989; Wenger, 1998) to help 
make sense of the difficult work of inquiry-oriented instruction. By definition, a broker is 
someone who can facilitate communication and fluidity of practices between different 
communities and who has membership status in the different communities. Here we consider two 
different communities: the local classroom community and the broader mathematical 
community. Typically, the instructor has membership status in both communities. More 
importantly for us, brokers link practices (in our case defining, conjecturing, proving, etc.) 
between communities and are able to promote learning by introducing into the classroom 
community elements of practice from the broader mathematical community.   

In previous work, we examined the case of students reinventing a bifurcation diagram in a 
first course in differential equations and the role of the instructor in this process. This analysis 
revealed three different types of instructor brokering moves: creating a boundary encounter, 
bringing participants to the periphery, and interpreting between communities (Rasmussen et al., 
2009). In this paper we highlight the first and third of these brokering moves. 

Creating a boundary encounter refers when a broker (i.e., the instructor) sets up an indirect 
interface between the classroom community and the broader mathematical community. A 
boundary encounter involves a boundary object, typically a well-chosen task or sequence of 
tasks, that provides an opportunity for students to engage in one or more disciplinary practices. 
In the sections that follow we delineate features of such tasks in our case study that opened a 
space for students to engage in the disciplinary practice of symbolizing.  

Interpreting between communities is a brokering move in which the instructor coordinates 
students’ mathematics with the more conventional or formal mathematics of the broader 
mathematical community. This type of brokering move typically occurs when the instructor 
inserts notations, symbols, graphs, diagrams, or provides other information that enables students 
to transcend the idiosyncrasies of their local classroom community. Interpreting between 
communities is significant because it shows how the instructor can connect student thinking to 
the well-developed mathematical culture. Moreover, it facilitates the sense of ownership of ideas 
and belief that mathematics is something that can be reinvented and figured out. 

 
Symbolizing 

Not all classroom activity is characterized by participation in disciplinary practices, even in 
inquiry-oriented classrooms. For instance, classroom mathematical practices capture the 
emerging content-specific mathematical progress of a local classroom community (Cobb, 2000; 
Rasmussen et al., 2015), whereas disciplinary practices capture how that progress might reflect 
what professional mathematicians do that transcends specific content. Symbolizing is the 
disciplinary practice of creating and using symbols to communicate mathematical ideas. Symbols 
include graphs, diagrams, and analytic expressions such as letters, numbers, and vectors. By 
engaging in their own symbolizing, students act like mathematicians – notating processes and 
connections between ideas with shorthand expressions that allow for efficiency of processing.  

In this paper we highlight symbolizing of the following four types that we have found to be 
prevalent in inquiry-oriented classes: 

(S1) Notating steps in a calculation or process,  
(S2) Stating a relationship between two or more mathematical objects,  
(S3) Creating a connection across two different representations (notating in new symbolism 

what has already been explained or described in a different way), and  



(S4) Creating a unifying inscription, a graphic or diagram that illustrates multiple 
relationships at once.   

In the results section, we call explicit attention to these four types of symbolizing in the context 
of students’ solving problems and communicating their reasoning.  

 
Research Setting and Methods 

Our research over the last decade in the teaching and learning of linear algebra has been 
grounded in the design-based research paradigm of classroom-based teaching experiments 
(Cobb, 2000). This involves a cyclical process of (a) investigating student reasoning about 
specific mathematical concepts and (b) designing and refining tasks that honor and leverage 
students’ mathematical ideas towards accomplishing the desired learning goals (Gravemeijer, 
1994; Wawro, Rasmussen, Zandieh, & Larson, 2013). One product of this design-based research 
is the Inquiry-Oriented Linear Algebra (IOLA) curricular materials, designed to be used for a 
first course in linear algebra at the university level. At present, three units comprise the IOLA 
materials: Unit 1: Linear Independence and Span (Wawro, Rasmussen, Zandieh, Sweeney, & 
Larson, 2012; Wawro et al., 2013); Unit 2: Matrices as Linear Transformations; and Unit 3: 
Change of Basis, Diagonalization, and Eigentheory. Many of the tasks in the IOLA materials are 
created to facilitate students engaging in experientially real task settings in such a way that their 
mathematical activity can serve as a basis from which more formal mathematics is developed.  

The data presented in this paper come from a classroom teaching experiment in a first course 
in linear algebra during Fall 2014 at a large public mid-Atlantic university. The data sources 
were classroom videos that capture small-group work and whole-class discussion, as well as 
students’ written work from class. In addition, the four walls of the physical classroom were 
almost entirely whiteboards, which the instructor took advantage of by encouraging students to 
work in their small groups together at the whiteboard; as such, another primary data source was 
photos of student and teacher work on classroom whiteboards.  

In this paper we focus on the class’s mathematical development through the first task of Unit 
3, “The Stretching Task” (see Figure 1). The first task builds from students' experience with 
linear transformations in ℝ! to introduce them to the idea of stretch factors and stretch directions 
and how these create a non-standard coordinate system for ℝ!. This is the beginning of a larger 
sequence in which students reinvent the diagonalization equation A = PDP-1. We analyzed the 
data to determine what types of symbolizing the students and the instructor were engaged in.  
These became our four types of symbolizing (S1) – (S4).  In addition we examined the data for 
instances of each of the three types of brokering moves (of which we found examples of two of 
the types).  Analysis of this data allows us to illustrate examples of students engaging in the 
practice of symbolizing, and we integrate this analysis with details regarding how the instructor 
serves as a broker between the classroom community and the broader mathematical community.   
	  

Results 
In this section we provide examples of both student and teacher symbolizing activity. This 

symbolizing activity falls into the aforementioned four categories: (S1) - (S4). We begin with a 
description of the task itself as a boundary object and then follow with a description of student 
and teacher use of the four types of symbolizing as they occur. Symbolizing serves as a means 
for students to record and communicate their inquiry into the mathematics. Communicating 
through symbolizing also serves as a means for brokering within and across different groups of 
students in the classroom as well as for brokering between the classroom community and the 
mathematical community. 



In Unit 3 Task 1 (referred to as “The Stretching Task”), students are asked to describe the 
result of a transformation given in terms of what the transformation does to two lines (See Figure 
1). One goal of the task is to create a means for students to engage with ideas that will facilitate 
their learning about stretch factors and stretch directions and the possibility of using these stretch 
directions as a grid for their work in the plane. Although the formal definitions of eigenvector 
and eigenvalue arise later (Task 3 of this unit) for students, we purposely use the terms stretch 
direction and stretch factor here to immerse students in the geometric interpretation of these 
terms. In choosing this task, the instructor serves as a broker by presenting the students with a 
task that can serve as a boundary object between the classroom community and the mathematical 
community. The task serves as a boundary object in that it provides an opportunity for students 
to engage in the disciplinary practice of symbolizing in ways that begin to align with how the 
mathematical community uses symbolizing in this context.	  

 
The Stretching Task 
	  
Imagine	  a	  linear	  transformation	  𝑇:  ℝ! → ℝ!	  that	  has	  the	  following	  properties:	  	  	  

	  
In	  the	  direction	  along	  the	  line	  𝑦 = −3𝑥,	  the	  
transformation	  stretches	  all	  points	  by	  a	  factor	  of	  two.	  	  	  
 
In	  the	  direction	  along	  the	  line	  𝑦 = 𝑥,	  the	  transformation	  
keeps	  all	  points	  fixed.	  	  
 

	  
1. Use	  the	  space	  on	  the	  right	  to	  sketch	  what	  should	  happen	  to	  the	  image	  shown	  on	  the	  left	  when	  it	  is	  stretched	  

according	  to	  the	  transformation	  described	  above.	  	  You	  may	  use	  a	  combination	  of	  intuition	  or	  calculations,	  as	  well	  
as	  any	  additional	  sketches	  below	  or	  on	  your	  group’s	  whiteboard.	  

	  

	   	   	  
	  
2. Determine	  what	  will	  happen	  to	   20 	  and	  to	  

−2
2   under	  this	  transformation.	  Use	  an	  initial	  estimate	  from	  your	  

sketch	  in	  problem	  1.	  Then	  try	  to	  do	  a	  calculation	  that	  will	  determine	  these	  locations	  more	  precisely.	  
	  
3. Determine	  a	  matrix	  that	  allows	  you	  to	  calculate	  what	  happens	  under	  the	  transformation	  to	  any	  point	  on	  the	  

plane.	  Use	  it	  to	  check	  your	  sketch	  or	  improve	  its	  accuracy.	  
 

Figure 1. Task 1: The Stretching Task. 
 

In what follows we present data from a particular classroom implementation of the materials 
in Fall 2014. Symbolizing of various types occurred during the parts of two class periods that 
students worked on Task 1. Student activity on Task 1 began with engagement within the 
graphical symbolization that they had been given in the introduction to the Stretching Task and 
in problem 1. This symbolizing is of types S1 and S2 in that students were notating steps in their 
graphing process and recognizing relationships that would help them create a transformation of 
the Z-box. Because this initial work occurred at the end of class, it was on the following class 



day that students and the instructor made connections between this graphical work on the task 
and other symbolic notation to describe the transformation (symbolizing type S3). In addition, 
the instructor introduced a unifying graphic based on student work to aid students in working 
with the transformation (symbolizing type S4). These symbolizing examples and the role of the 
teacher as a broker in these examples are detailed in the next four sections. 
 
Within the graphical representation (S1 and S2)  

Students initially engaged in the task by symbolizing within the graphical and verbal 
description that they had been given at the beginning of Task 1 and in Problem 1. Many students 
began by notating the points that stay fixed and then estimating the images of the points that 
stretch. Figure 2a illustrates the work of Donald, who presented at the board to explain his 
graphical symbolizing process (S1):   
 So you know the points along y = x are the same and, like, that’d be these points along 

that line. So you know like you get two of the corners, you know these points and these 
points are gonna stay the same. And then you also know that this stretches along the y 
= -3x line, which is like any of these. But this can be moved, like, kind of like a linear 
combination of this, where like you start along this line. And it stretches like up that 
way. And this corner point happens to, like, coincide with this point here which you 
know stays the same. So that’s along the line y = -3x and then you just double it to get 
that point, which comes over here. And you do the same for down here [the lower right 
corner]. And then once you get the 4 corners, you can just like figure that everything 
else is gonna stretch kind of similarly. [See Figure 2a] 

From the video of that day of class we can reconstruct his explanation.  First, he explained 
that the points along the line y = x, in particular the corner points −2−2  and 22 , will “stay the 
same.” He continued by noting the lines parallel to y = -3x all stretch in the same way, away 
from their “start along this line,” i.e., starting from the y = x line. [See the line segments Donald 
drew in the left of Figure 2a]. Note also Donald’s use of the phrase “linear combination.” He did 
not explain the algebra of this phrase but symbolized this graphically as a stretch from the y = x 
line along a line parallel to y = -3x. Donald continued by discussing the specific case of the 
corner point, −22 . He described that the corner point “happens to coincide with this point,” i.e., 

the corner point −22  is on the same line segment as −1−1 . The line segment is one of those he 

drew parallel to y = -3x. Then “you just double it,” i.e., double the segment from −1−1  to −22 . In 

doing this he marks the point −35 , which is the result of the transformation on the upper left 

corner of the box [See the line from −1−1  to −35  in each part of Figure 2a.] 

	  
                                     (a)                                                         (b) 

	  Figure 2. (a) Donald’s work on Problem 1 and (b) The instructor’s record of Donald’s work. 



Donald’s description exemplifies symbolizing in a graphical context to share steps in a 
process (S1) and show connections between pieces of graphical information (S2), i.e., how to 
combine the information that y = x stretches by one and y = -3x stretches by two. Clearly, 
verbalizations accompanied and were need to communicate his graphical approach. However, 
the focus remained on working within a graphically represented system of ideas. Next we discuss 
how other symbolizations allowed students to incorporate other ways of exploring this problem.  
 
A transition to vector notation (S3)  

On the next day of class, the instructor included a scanned copy of several examples of 
student work on this problem, including Donald’s work in Figure 2a (and the work in Figure 3a 
and 3b in the next section). As a follow up to Donald’s explanation, the instructor used a linear 
combination of vectors to record the student idea that −22  could be reached by going to −1−1  and 

then travelling −13  (see the first line of Figure 2b). The students’ idea that the vector −1−1  stays 

fixed but −13   doubles under the transformation, T, is indicated by lines 2 though 4 of Figure 2b. 

Finally, the last line of Figure 2b indicates the fact that combining the fixed −1−1  with the 

doubled −13  (now −26 ) reaches the point −35 . The instructor’s choice of symbols helps 
interpret between the student ideas and the standard mathematical notation. In particular, the 
symbols for a linear combination of vectors and the distributive properties of a linear 
transformation were familiar to the students from earlier work in the course, but they had not 
previously seen the application of a linear combination in the sense of line 2 of Figure 2b.   

The symbolizing by the instructor connected the graphical reasoning of the student to a 
symbolic vector notation, creating a connection across representations (symbolizing type S3). In 
addition, the symbols written by the teacher served as what Rasmussen and Marrongelle (2006) 
define as a transformational record. Transformational records are “notations, diagrams, or other 
graphical representations that are initially used to record student thinking and that are later used 
by students to solve new problems” (Rasmussen & Marrongelle, 2006, p.389). In other words, 
they record student inquiry in a way that provides a symbolization for future inquiry.   
 

         
(a)                                   (b)                                   (c)   

Figure 3. (a), (b) Two student examples showing a gridding of the plane using stretch directions. 
and (c)  The instructor’s graph of gridding using the stretch directions. 

 
Creating a unifying graph (S4) 

The instructor also included in her presentation examples from two other students on 
Problem 1 (Figure 3a, 3b). These examples show students creating a grid when trying to 
determine how the Z-box transformed. Note that each of these examples has similar features to 



Donald’s work, but more extensive gridding of the plane using lines parallel to y = -3x and y = x. 
Each also has points marked at −22  and at −35  indicating the doubling of a vector along that line 
to find the new corner point.  

The instructor emphasized the gridding in the student work and introduced the gridding of 
Figure 3c. In this way the instructor acted as a broker between the developing graphical 
symbolizing of the class and more sophisticated ideas from mathematics community.   

The graphical representation in Figure 3c illustrates two ways to grid the plane. One (in grey) 
is the standard familiar grid and the other (in blue) is based on lines parallel to the stretch lines 
described in Task 1. This gridding can be used as a way to more easily see the doubling along the 
lines parallel to y = -3x. This is how Donald explained that −22  stretches to −35 , but now, with 
the complete grid available, that graphical method is available for any point. In addition to this 
practical result that connects to student thinking, the grid sets the stage for the student 
exploration in Task 2 of more sophisticated ideas of change of basis and diagonalization as 
described below. The graphic of Figure 3c then is unifying of students’ current work and thus 
serves as an example of type S4 symbolizing. In addition, this graphic is key to the activity in 
Task 2 that leads to the creation of A = PDP-1.  

 
Conclusion	  

In this paper we explored student and instructor inquiry in the context of the disciplinary 
practice of symbolizing. Student inquiry in Task 1 involved exploring a graphical situation, 
creating symbols that expressed their emerging ideas about the mathematical situation, and 
symbolizing their graphical activity using vectors and vector equations. The inquiry involved: (a) 
creating or choosing appropriate ways to symbolize mathematical processes (S1) and 
relationships (S2) within particular representations, (b) making connections between different 
symbolizations of mathematical content (S3), and (c) creating a unifying graphical representation 
(S4). Each of these reflects a facet of the disciplinary practice of symbolizing, characterized 
through types S1-S4. Student inquiry into the mathematics of this task created a necessity for 
mathematical symbolism that students used to express their emerging ideas about the 
mathematical situation as well as to create more powerful and efficient solutions. The vector 
representations, vector equations, and unifying graphic (Figure 3c) provided additional tools for 
inquiry that were further developed and used in the subsequent tasks of this unit. 

Instructor inquiry into students’ mathematical thinking involves them making sense of and 
leveraging student insights so that they can appropriately connect the mathematics being 
developed by students in the classroom with the mathematics of the mathematical community. 
This is the notion of brokering. For the instructor to truly serve as a broker between the two 
communities, the instructor must participate in, recognize, and understand how students are 
engaging in the mathematics. A broker is not someone who simply relays information from one 
community to another, like a messenger; rather, a broker negotiates mathematical meaning 
between two communities. Furthermore, what tasks are selected and how they are used also 
plays a part in the brokering process, as tasks provide an interface through which the classroom 
community will encounter situations that can serve as a basis from which the more formal 
notions of the broader mathematical community can be developed. With the help of the 
instructor as broker, and boundary objects carefully chosen by the instructor, students can begin 
to act as mathematicians do. They can progress in their ability to engage in disciplinary practices 
in ways helpful not only for learning particular mathematical ideas but also for applying in other 
settings. 
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