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This study examines students’ procedural and conceptual understanding as evidenced by their 
written responses to two questions designed to assess aspects of their understanding of 
eigenvalues and eigenvectors.  This analysis draws on data taken from 126 students whose 
instructors taught using a particular inquiry-oriented instructional approach and 129 comparable 
students whose instructors did not use this instructional approach.  In this proposal, we offer 
examples of student responses that provide insight into their reasoning and summarize broad 
trends observed in our quantitative analysis.  In general, students in both groups performed better 
on the procedural item than on the conceptual item.  Additionally, the group of students who were 
taught with the inquiry-oriented approach outperformed the group of students who were taught 
using other approaches.  
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Linear algebra is a mandatory course for many science, technology, engineering, and 
mathematics (STEM) students. The theoretical nature of linear algebra makes it a difficult course 
for many students because it may be their first time to deal with this kind of abstract and 
conceptual content (Carlson, 1993). Carlson (1993) also posited that this difficulty arises from the 
prevalence of procedural and computational emphases in students’ coursework prior to linear 
algebra, and that it might therefore be difficult for students to connect new linear algebra topics 
and their previous knowledge. To address this issue, researchers have developed inquiry-oriented 
instructional materials and strategies to help students develop more robust, conceptual ways of 
reasoning about core topics in introductory linear algebra (e.g. Wawro, Rasmussen, Zandieh, & 
Larson, 2013). In this proposal we examine assessment data to identify ways in which students 
reasoned about eigenvectors and eigenvalues.  In particular, we identify differences in the 
performance of students whose instructors taught with a particular inquiry-oriented approach to 
teaching eigenvectors and eigenvalues and comparable students whose instructors did not use this 
approach.  

In this work we draw on data from an assessment that was developed to align with four 
core introductory linear algebra concepts addressed in the IOLA instructional materials: linear 
independence and span; systems of linear equations; linear transformations; and eigenvalues and 
eigenvectors (Haider et al., 2016). The focus of this study is to identify the ways students 
understand and reason about eigenvalues and eigenvectors. In the assessment, there were two 
questions, question 8 and 9 that addressed eigenvalues and eigenvectors. Question 8 was a 
procedural item related to the eigenvalue of a given matrix and question 9 focused on the 
conceptual understanding of the eigenvectors. The research questions for this proposal are: 

§   How did students reason about eigenvectors and eigenvalues in the context of 
questions designed to assess aspects of student’s procedural and conceptual 
understanding? 

§   How do the performance and ways of reasoning of students whose instructors 
adopted an inquiry-oriented approach to teaching linear algebra compare to the 
performance and ways of reasoning of other students?   



Literature & Theoretical Framing 
Many have argued that the shift from a predominantly procedural approach to 

mathematics many students experience before college to a more conceptual approach causes a lot 
of difficulties for students as they transition to university mathematics; linear algebra is a topic in 
which students struggle to develop a conceptual understanding (Carlson, 1993; Dorier & 
Sierpenska, 2001; Dorier, Robert, Robinet & Rogalski, 2000; Stewart & Thomas, 2009).  Across 
the literature on the teaching and learning of eigenvalues and eigenvectors, procedural thought 
processes are featured prominently. For example, Stewart and Thomas (2006) highlighted the 
example of the conceptual processes and difficulties students find in learning about eigenvalues 
and eigenvectors, where a formal definition may be immediately linked to a symbolic presentation 
and its manipulation. Thomas & Stewart (2011) highlighted a difficulty students find when faced 
with formal definitions for eigenvalues and eigenvectors. Since these definitions contain an 
embedded symbolic form (𝐴𝑥 = 𝜆𝑥), students often move quickly into symbolic manipulations of 
algebraic and matrix representations such as transforming 𝐴𝑥 = 𝜆𝑥 to 𝐴 − 𝜆𝐼 𝑥 = 0 without 
making sense of the reasons behind these symbolic shifts. Schonefeld (1995) used eigenpictures 
(“stroboscopic” pictures) to show 𝑥 and 𝐴𝑥 at the same time by using multiple line segments on 
the x-y-axis. He observed that graphical representations of eigenvalues and eigenvectors got little 
attention in the literature and that a picture may benefit more than algebraic presentations. It is 
also documented that students struggle to coordinate algebraic with geometric interpretations (e.g. 
Stewart & Thomas, 2010; Larson & Zandieh, 2013) and the students’ understanding of 
eigenvectors is not always well connected to concepts of other topics of linear algebra (Lapp, 
Nyman, & Berry, 2010). To support students in developing a better understanding of the formal 
definition and the geometrical interpretations of the eigenvalues and eigenvectors, researchers 
have developed a variety of instructional interventions (e.g. Tabaghi & Sinclair, 2013; Zanidieh, 
Wawro, & Rasmusen, 2016).  

Researchers often make reference to conceptual understanding and procedural 
understanding when discussing student’s thinking about mathematical concepts (Hiebert, 1986). 
To operationalize our distinction between concepts and procedures, we draw on Vinner’s (1997) 
distinction between conceptual and analytical behavior. According to Vinner (1997), students are 
in a conceptual mode of thinking if their behavior provides evidence that they are attending to 
concepts, their meanings and their interrelations. On the other hand, students are in an analytical 
mode of thinking when solving routine mathematical problems if they act in the way expected and 
certain analytical thought processes occur. In case they do not act in such ways but succeed in 
making the impression that they are analytically involved in problem solving then they are in 
pseudo-analytical mode of thinking. Vinner (1997) argued that in most problem solving situations 
when students are asked to solve a problem their focus usually is on which procedure should be 
chosen and not on why a certain procedure works. Based on this, we draw on Vinner’s (1997) 
definition of conceptual versus analytical (procedural) as an analytic tool for interpreting student’s 
answers to the questions involving eigenvalues and eigenvectors.  

Data Sources 
In our previous work, we have developed an assessment that covers the four focal topics 

of linear algebra mentioned earlier (Haider et al. 2016).  This assessment was administered at the 
end of linear algebra course at different public and private institutions across the country. This 
was a paper-and-pencil assessment that includes 9 items and the students were allocated one hour 
to complete. It was designed to measure students’ understanding of introductory linear algebra 
topics. Every item of the assessment contained a component of open-ended justification for 



students to elaborate their conceptual understanding of the topic. 
Figure 1. Question # 8 and 9 (Eigenvalues/Eigenvectors) of the assessment 

We have collected assessment data from two groups of students: students whose 
instructors received instructional supports to teach linear algebra using a particular inquiry-
oriented approach as part of the NSF-supported TIMES research project (who we will refer to as 
TIMES students), and students whose instructors did not receive these supports (who we will refer 
to as non-TIMES students.  The instructors who participated in the TIMES project attended a 3-
day summer workshop, participated online workgroup conversations for one hour per week for a 
semester, and implemented inquiry-oriented curricular material in their linear algebra class.  We 
have collected the assessment data of 126 Times students across six TIMES instructors and 129 
non-Times students across three non-TIMES instructors from different institutions in the US. 
Non-TIMES instructors were recruited from linear algebra instructors either at the same 
institutions as TIMES instructors or at other similar institutions (e.g. similar geographic area, 
similar size of student population, similar acceptance rate at institution) to collect assessment data 
for comparison of TIMES and non-TIMES students.  In this study, we focused on in-depth 
analysis of students’ reasoning on the assessment questions related to eigenvalues and 
eigenvectors. Both items are shown in the figures above. 

The inquiry-oriented approach to learning eigenvalues and eigenvectors associated with 
this study is characterized in detail elsewhere (Zandieh, Wawro & Rasmussen, 2016).  This 
approach supports students in coming to first learn about eigenvalues and eigenvectors as a set of 
“stretch” factors and directions that can be used to more easily characterize a geometric 
transformation.  In this sequence of tasks, students first work to describe the image of a figure in a 
plane under a transformation that is easily described in a non-standard coordinate system.  
Students then work to label points using standard and non-standard coordinate systems 
corresponding to the previous task; they also find matrices that transform points from one 
coordinate system to the other.  The instructor works to link this work to the matrix equation 
A=PDP-1 and subsequent tasks aim to leverage this conceptual basis as students learn more 
traditional computational methods associated with computing eigenvalues and eigenvectors.   

Methods of Analysis 
To identify different types of students’ approaches to eigenvectors and eigenvalues 

assessment items, we conducted our analysis in three stages: (I) developed a coding scheme for 



both the descriptive (open ended) part and the non-descriptive (multiple-choice) part of the items, 
(II) coded assessment data by following the coding scheme, (III) ran statistical analysis of coded 
data for descriptive statistics and t-test to compare the performance of TIMES and non-TIMES 
students.  

At the first stage, we decide the coding scheme for non-descriptive part of the problems. 
Later, we looked into the descriptive parts of the problems. We identified different correct 
students’ approaches for both problems, which helped us to refine our coding scheme. The coding 
scheme for question 8 and 9 is given in the table below: 

 Points Awarded and Criteria Comments 

Q
ue

st
io

n 
8 

3 Points: For any of the following answers.  
1: det 𝐴 − 𝜆𝐼 = 0 implies 𝑥 − 1 𝑥 − 4 = 0 implies 𝑥 = 1 or 𝑥 = 4 

implies 𝜆 = 2 is not an eigenvalue for the matrix 𝐴. 
2: det 𝐴 − 2𝐼 = −2 ≠ 0 implies 𝜆 = 2 is not an eigenvalue of 𝐴. 
3: 𝐴 − 2𝐼

𝑥
𝑦 = 0 implies 𝑥 = 0 and 𝑦 = 0 which is the trivial vector, 

implies 𝜆 = 2 is not an eigenvector for the matrix 𝐴. 

Fully correct 
answer 

2 Points: if any answer with computational mistakes and with good 
justification and conclusion will be credited with 2 credits (computational 
mistaken attempt cannot be awarded full credit like a fully correct answer) 

Partially 
correct answer 

1 Point: if any answer missing any of the three rules (correct answer, correct 
computation and correct explanation) will be missing credits depending on the 
number of rules missed. 

Some 
procedural 
knowledge  

Q
ue

st
io

n 
9 

3 Points: Writing 𝑀𝑥 = 𝜆𝑥 or mentioning 𝑀𝑥 as a constant multiple of 
𝑥/scalar multiple of 𝑥 with or without mentioning what the values of this 
constant/scalar; 0, 1 and −1 and giving the options 𝑥, 𝑤, and 0.  

Fully correct 
answer  

2 Points: If a student mentions 𝑀𝑥 = 𝜆𝑥 and miss any of the possible values of 
constant/scalar; 0, 1, and -1 and/or miss one of the given options 𝑥 w, and 0. 

Partially 
correct answer 

1 Point: Writing 𝑀𝑥 = 𝜆𝑥 and/or miss two of the possible values of 
constant/scalar; 0, 1, and -1 and/or miss two of the given options 𝑥, 𝑤 and 0. 

Some 
understanding 

Table 1. Criteria for Awarding Points for question 8 and 9 

At the second stage of analysis, we coded assessment data by following the above grading 
scheme. Two researchers looked at every students’ attempt and decide a score independently and 
then matched with each other. If both researchers assigned different score to a particular student, 
then they discussed according to the grading scheme and agreed on a common score for that 
student. If both researchers have disagreement about a particular score, then a third researcher was 
consulted to make a consensus. At the third stage of statistical analysis, we checked the 
descriptive statistics to see the overall performance of students on the eigenvalue and eigenvectors 
questions. We also compared TIMES students with Non-TIMES students for both questions. We 
used t-test to compare the difference of means between questions 8 and 9 for both groups. 

Initial Findings 
In this section we summarize how students reasoned about the eigenvectors and 

eigenvalues items and how they med on both questions. We will provide some examples to show 
how they reasoned then point out using the quantitative data how the TIMES students performed 
compared to Non-Times students.   



The following example shows that the student has a conceptual and procedural 
understanding in the sense that he/she by solving 𝐴 − 2𝐼 𝑥 = 0, finding only the trivial solution 
and concluding that 2 is not an eigenvalue which is a nonstandard solution.  

 
Figure 2: A student’s example for Q8 

Another example of a student who is interpreting the matrix M as something that can change in 
interpreting the eigenvector equation. 

 
Figure 3: A student’s example for Q9b 

To see the difference in the students’ performance we paid attention to the mean and 
standard deviation of the coded data. We also used t-test to compare the difference of means 
between both groups.  

Table 2. Summary of TIMES and Non-TIMES Students’ Performance 

When examining the quantitative data to see how the two groups compared we noticed 
two things that seemed particularly noteworthy.  First, both groups did better on the procedural 
item than the conceptual one.   Second, TIMES students did better than non-TIMES on both 
items, but they outperformed non-TIMES on the conceptual item at a higher rate. In our session 
we will more deeply explore evidence of conceptual and procedural reasoning as it appeared in 
students’ responses to the two items, and differences between the two groups of students. 

 

Question All Students TIMES Students Non-TIMES Students 
Q 8: Maximum Possible 
Points 3 

Mean: 1.85 
SD: 1.31 

Mean: 2.0 
SD: 1.23 

Mean: 1.71 
SD: 1.37 

Q 9 (a & b): Maximum 
Possible Points 9 

Mean: 1.50 
SD: 0.82 

Mean: 1.59 
SD: 0.89 

Mean: 1.42 
SD: 0.74 

Q 9 (b part only)  
Maximum Possible Points 3 

Mean: 1.59 Mean: 0.54 
p-value = 0.0000273 < 0.05 
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