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Research and surveys continue to document the underrepresentation of women of color (WOC) 
in mathematics. Historically, their achievement in mathematics has been framed in a deficit way. 
Following the broader call for more research concerning WOC’s learning experiences in STEM, 
we interviewed eight WOC about their understanding of basis in linear algebra. We documented 
diverse ways that these women creatively explained the concept of basis using intuitive ideas 
from their everyday lives. These examples revealed important nuances and aspects of 
understanding of basis that are rarely discussed in instruction. These students’ ideas can also 
serve as potentially productive avenues to access the topic. Our results also challenge the 
existing broader narrative about the underachievement of women of color in mathematics.  
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Women of color continue to be underrepresented in most areas of science, technology, 
engineering and mathematics (STEM), and more research is needed to understand the 
experiences of women of color in those areas (Ong, Wright, Espinosa, & Orfield, 2011). Their 
underrepresentation is also situated in the national call for more graduates in those fields in the 
U.S. (PCAST, 2012). In this study, we centralize the mathematical sense making of these 
students to counter the common colorblind approach to studying cognition. This focus has the 
potential to construct counter-narratives about women of color’s achievement in STEM 
(Adiredja, in preparation). Research has historically positioned students of color as struggling or 
underachieving (Harper, 2010).  

Research in post-secondary mathematics education has uncovered useful insights into the 
process of learning of advanced topics by focusing on students’ individual cognition. However, 
scholars have noted the tendency of cognitive studies to deemphasize equity concerns (Martin, 
Gholson, & Leonard, 2010). Studies of mathematical cognition often take a colorblind approach 
in which students’ background information is omitted (Nasir, 2013). There is a broader call for 
research at the post-secondary level to focus on addressing inequities, which include exploring 
ways that studies of student thinking can engage with issues of equity (Adiredja & Andrews-
Larson, under review). 

Theoretical perspectives on the nature of knowledge and how it develops directly impact the 
way we assess students’ understanding and their contributions in mathematics. Studies of 
cognition share the power to determine what counts as productive knowledge, how learning is 
supposed to happen, and what kinds of students benefit in the process (Adiredja, 2015; Apple, 
1992; Gutiérrez, 2013). For example, if we believe that mathematical knowledge can only be 
built upon prior formal mathematical knowledge, then it would be reasonable to privilege such 
knowledge in learning. However, one implication of this stance is that students who do not have 
the requisite formal knowledge would then be positioned as “not ready” or “less able,” while 
students who do are seen as “smart,” and are allowed to move forward (Gutiérrez & Dixon-
Roman, 2011; Herzig, 2004). This deemphasizes the reality that such knowledge has been more 
available to some groups than others (Oakes, 1990). Cognitive studies can challenge some of 
these assumptions, and broaden what counts as productive ways of thinking and who counts as 
successful learners. 



One way this is occurring at the undergraduate level is through research that focuses on 
building from students’ informal knowledge and intuitions. For example, the instructional design 
theory, Realistic Mathematics Education (RME) (Freudenthal, 1983) has inspired some 
researchers to design curricula that build from experientially real start points (e.g., abstract 
algebra, Larsen, 2013; differential equations, Rasmussen & Kwon, 2007; geometry, Zandieh & 
Rasmussen, 2010; linear algebra, Wawro, Rasmussen, Zandieh, Sweeney, & Larson, 2012). 
Others focus on students’ intuitions or conceptual metaphors to make sense of formal 
mathematics (Adiredja, 2014; Oehrtman, 2009; Zandieh, Ellis, & Rasmussen 2012). Most of 
these studies focus on using students’ intuitions/ informal knowledge as building blocks for the 
more formal mathematical knowledge. In this paper, we explore ways that students’ intuitive 
explanations can reveal nuances about a formal mathematical topic.  

We explore students’ explanations about the concept of basis in linear algebra using 
everyday ideas. Linear Algebra is a critical course for engineering and mathematics majors, and 
the concept of basis is a central topic. There has not been much research done about the concept 
of basis, though some researchers suggest that it is challenging for students (Stewart & Thomas, 
2010). Stewart and Thomas (2010) found that students struggle in identifying span and linear 
independence in their description of basis. Moreover, they also struggle to define each of those 
terms, and tend to explain those concepts in terms of procedures. However, the authors found 
that students who received instruction that emphasized “geometry, embodiment and linking of 
concepts” (p. 177), were much better in describing the concepts compared to those whose 
instructions solely focused on symbolic algebra and isolated concepts. Students from the former 
group were also able to draw richer concept maps about basis than students from the more 
traditional class. These findings further support the approach of building from experientially real 
starting points (geometry and embodied ideas) to support students’ understanding.     

In this paper, we want to explore the diversity of ideas used by eight women of color to 
describe the concept of basis. We are less interested in identifying students’ struggles with the 
concept of basis. Later we argue for the importance of adopting an anti-deficit perspective in 
analyzing students’ ideas. In particular we explore the following research questions:  

1. What everyday contexts do these women use to explain the concept of basis? 
2. What do their explanations reveal about nuances in the concept of basis?  

In this paper, we position these women as informants into their mathematical thinking and what 
it reveals about the nuances of the concept of basis.  
 

Conceptual and Theoretical Frameworks 

The “Anti-deficit Achievement Framework” from higher education research (Harper, 2010) 
guides the design and analysis of this project. Instead of perpetually focusing on examining 
deficits or struggles of students of color in STEM, Harper’s framework focuses on understanding 
the success of these students despite existing inequities. For example, instead of asking the 
question, “Why are Black male students’ rates of persistence and degree attainment lowest 
among both sexes and all racial/ethnic groups in higher education?” This deficit-oriented 
question can be reframed with the Anti-deficit Framework as, “How did Black men manage to 
persist and earn their degrees, despite transition issues, racist stereotypes, academic 
underpreparedness, and other negative forces?” (p. 68). The Anti-deficit Framework focuses on 
challenging a particular narrative about underachievement of students of color in STEM, which 
is also attached to women of color (e.g., Why are women dropping out of computer science?). 
While the author’s work focuses on inequities in STEM higher education, some researchers in 



undergraduate mathematics education share similar perspectives in their study of students (e.g., 
successful Black mathematics majors, Ellington & Frederick, 2010).  

In this paper we focus on countering the narrative of underachievement of women of color in 
mathematics, particularly with regards to their participation. The principle of “centralizing 
without essentializing” experiences (Bell, Orbe, Drummon, & Camara, 2000) provides an 
alternative to essentializing experiences of women of color (e.g., “all women of color struggle 
with basis in this way”). Centralizing instead leads to a focus on understanding the richness of 
their knowledge and sense making without attributing particular ways of sense making to all 
students in these groups.  

The two authors of this paper come from different theoretical traditions, which guide our 
joint analysis. The first author comes from Knowledge in Pieces (KiP) (diSessa, 1993) 
perspective, and the second author has used RME (Freudenthal, 1983) and conceptual metaphors 
(e.g., Lakoff & Johnson, 1980) to productively analyze student thinking. The commonality of the 
different perspectives is that they view students’ knowledge in an anti-deficit way. These 
perspectives highlight the use of intuitive ideas to explain mathematical and scientific ideas, and 
ways that they can be productive in building on students’ existing understandings. In laying out 
our perspectives we position ourselves as being open to students’ intuitions and non-normative 
language. 

 
Methods 

Given the desired depth and detail of analysis, this study favored the use of a small number 
of research subjects and videotaped individual interviews (diSessa, Sherin, & Levin, 2016). 
Participants were 8 undergraduate female students of color at a large public research university. 
The university’s mathematics advising center shared contacts of mathematics majors and minors 
who identified as women of color. We invited students via email, and through personal contacts 
of the authors of this paper. The breakdown of racial and ethnic backgrounds and their past 
mathematics courses are presented in Table 1. This information was drawn from a student 
background survey that was administered at the end of the interview. With the exception of one 
student who is a Biomedical Engineering major (Morgan), all the other students were 
mathematics major or minor. All pseudonyms were selected to reflect the origin of students’ 
names.  

Each interview lasted for 90 minutes. We developed the protocol to explore student 
understanding of basis. Students started the interview by solving four linear algebra problems 
that did not mention basis but for which basis could be relevant. We then asked them about basis, 
which included the way they would define it, and everyday ideas that were useful to explain the 
concept. In this paper, we focus specifically on students’ discussion of everyday examples.  
These occurred most often in response to questions Q2a and Q2b below, but also sometimes in 
response to other questions later in the interview.  
Q2a. Can you think of an example from your everyday life that describes the idea of a basis? 
Q2b. How does your example reflect your meaning of basis? What does it capture and what does 
it not?  
 
Table 1. Students’ Racial/Ethnic Background and Mathematics Course History 
Student Racial/Ethnic 

Background 
Linear Algebra 
Completion 

Grade Other Mathematics Courses 

Leonie African American Spring 2016 A Calculus I, II, and III 



Morgan Asian/Asian American Spring 2016 A Calculus I, II, and III, and 
Differential Equations 

Annissa Hispanic/Latin@ Fall 2014 B Calculus I and II 
Eliana Hispanic/Latin@ Spring 2014 C Calculus I and II 
Nadia Hispanic/Latin@ Fall 2015 A Calculus I, II, and III 
Jocelyn Hispanic/Latin@ Spring 2015 B Calculus I, II, and III 
Stacie Hispanic/Latin@ Spring 2016 C Calculus I, II, and III 
Liliane Hispanic/Latin@/White Fall 2015 B/C Calculus I, II, and III 
 

We transcribed the interviews following guidelines from Ochs (1979). Transcripts were 
organized by turns, marked by changes in speaker. Transcripts use modified orthography (e.g., 
wanna, gonna, cus) to stay close to the actual students’ utterance. Our analysis first focused on 
identifying the everyday context and the details associated with that context (e.g., how does the 
student think about a vector, a vector space, or scalar multiple?). We then differentiated between 
utterances that had to do with characteristics of the basis vectors, and those that had more to do 
with roles of the basis vectors in relation to the larger space. The next step of the analysis is 
developing codes through open coding (Strauss & Corbin, 1994) to capture nuances of students’ 
understanding of basis.  
 

Results 

Students’ Everyday Examples 
We found that the majority of the students discussed at least one everyday context to explain 

the concept of basis. Table 2 provides a summary of the different contexts. We elaborate on the 
details of some these contexts in a later section.  

 
Table 2. Everyday contexts used to explain basis and vector spaces 
Student Context (for basis and vector space) 
Leonie friendship 
Morgan driving in a city (on a grid), Legos, cooking, groups of pens 
Annissa set of solutions (no actual everyday example) 
Eliana least amount of myself I need to cover the space of the room, storage room, 

dimension, skeleton, outline of a paper 
Nadia floor, universe and earth, syntax in programming 
Jocelyn fashion, recipe, art sculpture, collage 
Stacie walking to places in a room, floor as a plane, marching band 
Liliane religious teachings 
 
Characteristics and Roles of Basis Vectors  

Students discussed characteristics of the basis vectors in their everyday examples. While 
many of the ideas they brought up can be associated with the notion of linear independence, their 
ideas reveal nuances about linear independence and its role in defining basis. The first set of 
codes below capture these characteristics of basis:    
1. Minimal/maximal focuses on the required number or amount of vectors needed for the basis.  
Minimal focuses on the fact that the basis is the least amount of vectors necessary. Maximal 
focuses on the need to include all the basis vectors and that more would lead to redundancy.  
2. Essential focuses on the quality of the vectors being the core and necessary. 



3. Representation focuses on naming or identifying the smaller set as the structure or 
representation of the larger space. 
4. Non-redundant focuses on not wanting extraneous information in a set, or the act of reducing 
or removing the extraneous information. 
5. Different/sameness focuses on comparing items (vectors) based on their difference/similarity 
for the sake of keeping or removing items from the basis.  

Prior to conducting the interviews we had noticed that basis vectors are sometimes 
emphasized in mathematics lessons as a way to generate a space of vectors. This is an emphasis 
on the basis vectors as a spanning set. Other situations might emphasize the role of basis vectors 
to describe the vector space, e.g., the basis for the null space of a non-invertible matrix serves as 
a short hand to describe that space. We asked students directly about this idea of generating and 
describing through Q5 and Q6, which ask, “Can you see a basis as a way to [generate/ describe] 
something?” But even before we asked students directly, they spontaneously brought up the idea 
of generating and describing in their description of basis, suggesting resonance of this idea. 
Lastly, related to the code of representation, students also brought up the role of choosing the 
particular vectors to represent the larger space.    
1. Generating: To create the larger space from the basis vectors. 
2. Describing: To describe the space using the basis vectors. 
3. Sampling: To choose the particular basis vectors as representatives of the larger space. 
In the next section we share our analysis of one student, Jocelyn to illustrate how we 
operationalize these codes.  

Illustrative example of analysis. We illustrate our analysis and codes with one student, 
Jocelyn. Asking students to assess the validity of their everyday example turned out to be very 
informative of aspects of basis to which students were attending. Jocelyn’s case illustrates ways 
that some of the codes emerged in our analysis. Jocelyn described basis in the context of 
fashion/creating an outfit. Jocelyn saw basis as minimum number of clothing pieces that “allows 
you to make all those outfits.” In this turn, she was explaining what aspects of basis her example 
captured. We used bold texts to mark the codes in the write up of our analysis.  
Interviewer: In the way you think about this sort of outfit idea to describe basis, um, what aspects 

of your understanding of basis is captured with your example and what part of it is not 
captured? 

Jocelyn: Um it's minimal. To pick one pair of heels and one pair of tennis shoes. So when I think 
of my idea of a basis, my mind goes to minimal. Um, what doesn't it capture? Well, ok, so it's 
weird cause I guess you can use one pair of shoes for different outfits. But like if I'm trying 
to make...it's harder to kind of have like a casual outfit and in a formal outfit there's not a 
whole lot of like overlap you end up having each piece in each outfit in the basis. So it's like. 
How do I explain this? I feel like the basis I'm making, all of the pieces aren't as like they're 
not all the same. Like you have shoes, tops and pants. You can't make an outfit with just 
shoes. But if you have a basis, you can pick just some of the vectors, combine them and 
make something and leave all the rest out. Cause you can't just put on shoes and pants. So 
that's where it kinda...that's one of the ways that doesn't really [captures it]. 

Jocelyn attended to the minimal aspect of a basis. In addition to using the word minimal, she 
explicitly identified the need for the specific quantity of one pair of heels and tennis shoes. The 
particular pair of shoes serves as a representation for formal shoes and casual shoes 
respectively, and you end up with “each piece in each outfit in the basis.” Earlier in the interview 
she discussed the necessity of one pair of heels for a formal outfit and one pair of tennis shoes 



for a casual outfit. It was also important to Jocelyn that the basis vectors were different (“they’re 
not all the same”), and as a set was non-redundant (lack of “overlap” in the pieces). She also 
highlighted the essential nature of each element of the basis. She explained this in the way that 
an outfit needs shoes, pants and tops. She asserted, “you can’t make an outfit with just shoes,” or 
“just put on shoes and pants.”  

In addition to attending to particular aspects about the basis vectors, Jocelyn also attended to 
the roles of the basis vectors in the larger space. In particular she attended to the role of the basis 
vector in generating the larger space, and the necessity of choosing or sampling the particular 
basis vectors to represent the larger space. We coded the phrase “combine them and make 
something” as highlighting the generating relationship. We coded “to pick one pair of heels and 
one pair of tennis shoes” as also highlighting the sampling relationship. This is not to be 
confused with the representation code, which focuses on the basis vectors as representatives of 
the larger space.         

Jocelyn’s assessment also revealed a unique concern that we did not observe with other 
students about the ability to choose some of the vectors in the basis but not all of them. Jocelyn 
argued that with basis vectors, one could use a subset of them to generate a vector in the space. 
In the context of fashion, she could take a subset of the pieces to generate an outfit. The fact that 
she needed a top, a bottom and a pair of shoes meant that her example required that she had one 
piece from each category of clothing. She saw this as a limitation to her example. In the next 
section we explore the extent to which students in the study brought up roles of the basis vectors.  

A focus on the generating relationship. In the process of analyzing students’ everyday 
examples we found a wide range of examples of generating, a smaller number of examples of 
describing, and some examples of sampling. We focus now on most common code on the role of 
the basis vectors: generating. Each student had at least one example of what we label as 
generating.  

Common verbs for the generating code were variations of “to make” or “to build.” For 
example, Morgan talked about building in terms of Legos, “you're given like the 3 by 2 Lego 
[pieces] and you have like a 2 by 2 Lego [piece] you can just like build on to that to create that I 
guess space that you have.”  Nadia spoke about computer programming syntax, “Syntax is like 
stuff so you can make a program that doesn't give you an error.” Other variations include “add,” 
“expand”, and “come from that,” which Liliane used in her description of basis using religious 
teachings: 

So I’m very religious and so the teachings that I that we share with each other and that we 
read about and all that stuff. Like, there are a lot of things that you can add to and be like 
here’s an application and here’s the things, and this expands to this and this and this. But 
there’s like the most basic teachings and like it all comes back to that. And this is the basic 
thing like you have the Ten Commandments. You have the Scriptures and you have like the 
prophets and you have your connection with God and, like all of the decisions and all of 
things that come from that and you can reach all of the other points with this basis. 

These examples illustrate the different ways students brought up the notion of generating, and 
these women’s creativity with the everyday contexts. 

 
Discussion and Implication 

The two main components of our results illustrate (1) the creativity and breadth of the 
everyday contexts used to describe basis by these female students of color, and (2) the nuances in 
understanding of basis that have come out of our open coding of this student data. The range of 



examples that students used was particularly interesting and useful. Most of these were not 
examples we had thought of ourselves prior to beginning the study. We are mindful of not 
gendering or racializing these examples, which would lead to essentializing the students. 
Students did discuss basis in the context of fashion, cooking and religion, but they also brought 
up other contexts like driving, skeleton, and the universe. These contexts are likely inspired by 
the students’ experiences, and not their background characteristics. Future studies can further 
explore the range of contexts to explain basis, and the details of their differences. One can also 
investigate if there are shared learning experiences among these women that contributed to their 
flexibility to come up with these examples. Moskovich (2012) asserted that there is nothing 
inherently different about the cognitive processes of students of color in mathematics. However, 
there is a difference in their “conditions of learning” (p. 96). We conjecture that the different 
conditions for learning might have contributed to the creativity of these students.   

These women were also fairly sophisticated in judging their own examples in terms of what 
aspects of the examples worked well for their understanding of basis and what aspects of the 
context were harder to line up with their understanding of basis. For example, Jocelyn did not 
think her outfit example captured the idea that you can create vectors in the space by just using 
one or two of the basis vectors, whereas in her outfit example, one would need to use all three 
basis vectors (shoes, tops and pants) to create a wearable outfit. In grappling with what aspects of 
their context worked well and which did not, the students revealed many nuances of basis that 
we might not have discovered using strictly formal mathematical questions. Together, these 
students’ creativity and sophistication in assessing their examples challenges the narrative of 
underachievement of women of color that Harper (2010) has noted.   

We argue that this paper makes contributions both to research on student cognition in 
addition to equity research. From a cognitive point of view, this is the only study that we know 
of that focuses on students’ everyday examples of basis. In fact, there have been very few studies 
done on student understanding of basis and also few studies on students’ ability to create 
everyday examples of mathematical constructs at the undergraduate level. For these reasons, this 
paper adds to the literature on student mathematical cognition and reasoning at the undergraduate 
level. In addition, we argue that the paper adds valuable data to the corpus of research in 
undergraduate mathematics education in that few studies have been written about the 
mathematical thinking of women of color. Sometimes this is because women of color have not 
been included in data sets (perhaps because there were not many women of color in the 
population from which the data was drawn). Other times we simply do not know whether or not 
women of color were in the data sets because, as one can see from a review of the papers in 
recent proceeding of the Conference on Research in Undergraduate Mathematics Education 
(RUME), it is not common in the RUME community to report data on gender and particularly on 
ethnicity.  

This work may have implications for curriculum design. As an example, consider the 
experientially real starting points emphasized in the curriculum design framework of RME. Our 
analysis challenges us to reflect on what counts as an experientially real starting point for our 
students. Creating these experientially real starting points requires us to know our audience.  In 
our past work we may have focused on certain types of students more than others in imagining 
what is experientially real to this audience. Making sure to interview and listen to the thinking of 
students who are not as often interviewed in RUME studies is vital to making sure we are 
reaching all students in instruction and also with our curriculum design. 
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