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Only recently ‘abstraction on objects’ has attracted attention in the literature as a form of 

abstraction that has the potential to take account of the complexity of students’ knowing and 

learning processes compatible with their strategy of giving meaning. This paper draws 

attention to several emerging insights from the evolving framework of structural abstraction 

in students’ knowing and learning of the limit concept of a sequence. Particular ideas are 

accentuated that we need to understand from a theoretical point of view since they reveal a 

new way of understanding knowing and learning advanced mathematical concepts and have 

significant implications for educational practice.  
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Introduction 

Theoretical and empirical research shows the existence of differences in knowing and 

learning concerning different kinds of knowledge (diSessa, 2002). A general framework on 

abstraction cannot encompass the whole complexity of knowing and learning processes in 

mathematics. Rather, in investigating the nature, form, and emergence of knowledge pieces, 

various micro-genetic learning theories may be developed, which will be quite specific to 

particular mathematical concepts, individuals, and their underlying sense-making strategies. 

As a consequence, the complexity of knowing and learning processes in mathematics cannot 

be described or explained by only one framework. Instead, we acknowledge that 

comprehensive understanding of cognition and learning in mathematics draws on a variety of 

theoretical frameworks on abstraction. 

The literature demonstrates significant theoretical and empirical advancement in 

understanding ‘abstraction-from-actions’ approaches, particularly the cognitive processes of 

forming a (structural) concept from an (operational) process (Dubinsky, 1991; Gray & Tall, 

1994; Sfard, 1991). Abstraction-from-actions approaches take account of a certain sense-

making strategy, namely what Pinto (1998) described as ‘extracting meaning’. However, only 

recently ‘abstraction on objects’ has attracted attention as a form of abstraction that provides 

a new way of seeing the complex knowing and learning processes compatible with students’ 

strategy of what Pinto (1998) described as ‘giving meaning’.   

The purpose of this paper is to provide deeper meaning to a recently evolving framework 

of a particular kind of ‘abstraction from objects’: structural abstraction. The structural 

abstraction framework is evolving in the sense that the framework functions both as a tool for 

research and as an object of research (Scheiner & Pinto, submitted). In more detail, we use 

the structural abstraction framework retrospectively as a lens through which we reinterpret a 

set of findings on students’ knowing and learning of the limit concept of a sequence. This 

reinterpretation is an active one in the sense that the framework serves as a tool to analyze a 

set of data, while the framework is also refined and extended since the reinterpretation 

produces deeper insights about the framework itself. Especially, these more profound insights 

are what we need to understand from a theoretical point of view since they have relevance for 

significant issues in knowing and learning advanced mathematical concepts.  



We begin by providing an upshot of our synthesis of the literature on abstraction in 

knowing and learning mathematics. Our synthesis is to suggest an orientation toward the 

evolving framework of structural abstraction as an avenue to take account of an important 

area for consideration – that is, drawing attention to the complex knowing and learning 

processes compatible with students’ ‘giving meaning’ strategy. The structural abstraction 

framework constitutes the foundation of the second part of the paper providing emerging 

insights in knowing and learning the limit concept of a sequence. These insights offer 

theoretical advancement of the framework and deepen our understanding of knowing and 

learning advanced mathematics.  

 

Mapping the Terrain of Research on Abstraction in Mathematics Education 

Abstraction seems to have gained a bad reputation because of the criticism articulated by 

the situated cognition (or situated learning) paradigm, and, as a consequence, has almost 

disappeared. This criticism rests primarily on traditional approaches considering abstraction 

as decontextualization and often confusing abstraction with generalization. The recent 

contribution by Fuchs et al. (2003) shows that such classical approaches to abstraction still 

exist:  

“To abstract a principle is to identify a generic quality or pattern across instances of the 

principle. In formulating an abstraction, an individual deletes details across exemplars, 

which are irrelevant to the abstract category […]. These abstractions […] avoid 

contextual specificity so they can be applied to other instances or across situations.” (p. 

294) 

However, scholars in mathematics education argued against the decontextualization view of 

abstraction. Van Oers (1998, 2001), for instance, argued that removing context must 

impoverish a concept rather than enrich it. Several other scholars have reconsidered and 

advanced our understanding of abstraction in ways that account for the situated nature of 

knowing and learning in mathematics. Noss and Hoyles (1996) introduced the notion of 

situated abstraction to describe “how learners construct mathematical ideas by drawing on 

the webbing of a particular setting which, in turn, shapes the way the ideas are expressed” (p. 

122). Webbing in this sense means “the presence of a structure that learners can draw up and 

reconstruct for support – in ways that they can choose as appropriate for their struggle to 

construct meaning for some mathematics (Noss & Hoyles, 1996, p. 108). Hershkowitz, 

Schwarz, and Dreyfus (2001) introduced the notion of abstraction in context that they 

presented as “an activity of vertically reorganizing previously constructed mathematics into 

new mathematical structure” (p. 202). They identify abstraction in context with what Treffers 

(1987) described as ‘vertical mathematization’ and propose entire mathematical activity as 

the unity of analysis. These contributions demonstrate that research on abstraction in 

knowing and learning mathematics has made significant progress in taking account of the 

context-sensitivity of knowledge.  

Several other contributions shape the territory in mathematics education research on 

abstraction. Scheiner (2016) proposed a distinction between two forms of abstraction, namely 

abstraction on actions and abstraction on objects. This distinction has been further refined in 

Scheiner and Pinto (2014) arguing that the focus of attention of each form of abstraction 

takes place on physical objects (referring to the real world) or mental objects (referring to the 

thought world) (see Fig. 1).    
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Fig. 1: A frame to capture various kinds of abstraction (reproduced from Scheiner & Pinto, 2014) 

We consider this distinction as being productive in trying to capture some of the variety of 

images of abstraction in mathematics education (for details see Scheiner & Pinto, 2016). It 

acknowledges Piaget’s (1977/2001) three kinds of abstraction, including pseudo-empirical 

abstraction, empirical abstraction, and reflective abstraction, that served as critical points of 

departure in thinking about abstraction in learning mathematics. Research on abstraction in 

mathematics has long moved beyond classifying and categorizing approaches in cognition 

and learning. For instance, Mitchelmore and White (2007), in going beyond Piaget’s 

empirical abstraction and in drawing on Skemp’s (1986) conception of abstraction, described 

abstraction in learning elementary mathematics concerning seeing the underlying structure 

rather than the superficial characteristics. Abstraction in learning advanced mathematics, 

however, is almost always defined in terms of encapsulation (or reification) of processes into 

objects, originating in Piaget’s (1977/2001) idea of reflective abstraction. Reflective 

abstraction is an abstraction from the subject's actions on objects, particularly from the 

coordination between these actions. The particular function of reflective abstraction is 

abstracting properties of an individual's action coordination. That is, reflective abstraction is a 

mechanism for the isolation of specific properties of a mathematical structure that allows the 

individual to construct new pieces of knowledge. Taking Piaget’s reflective abstraction as a 

point of departure, Dubinsky and his colleagues (Dubinsky, 1991; Cottrill et al., 1996) 

developed the APOS theory describing the construction of concepts through the 

encapsulation of processes. Similar to encapsulation is reification – the central tenet of 

Sfard’s (1991) framework emphasizing the cognitive process of forming a (structural) 

concept from an (operational) process. In the same way, Gray and Tall (1994) described this 

issue as an overall progression from procedural thinking to proceptual thinking, whereas 

proceptual thinking means the ability to flexibly manipulate a mathematical symbol as both a 

process and a concept. Gray and Tall (1994) termed symbols that may be regarded as being a 

pivot between a process to compute or manipulate and a concept that may be thought of as a 

manipulable entity as procepts. 

Scheiner (2016) revealed that the literature shows an unyielding bias toward 

abstraction on actions as the driving form of abstraction in knowing and learning advanced 

mathematics. This almost always exclusive view arises directly from the trajectory of our 

field’s history; originating in Piaget’s assumption that only reflective abstraction can be the 

source of any genuinely new construction of knowledge. While abstraction-on-actions 

approaches have served many purposes quite well, they cannot track detail of students’ 

knowing and learning processes compatible with the strategy of giving meaning. The recently 

evolving framework of structural abstraction has attracted attention as a promising tool to 

shed light into the complexity of students’ knowing and learning processes compatible with 

their strategy of ‘giving meaning’.  

 



The Evolving Framework of Structural Abstraction 

The evolving framework of structural abstraction (Scheiner, 2016) further elaborates 

Tall’s (2013) conception of this particular kind of abstraction. The crucial aspect lies in the 

argument that structural abstraction takes account of two processes: (1) complementizing 

meaningful aspects and structure underlying specific objects falling under a particular 

concept, and (2) promoting the growth of a complex knowledge system through restructuring 

various knowledge pieces. Several assumptions guide the evolving framework of structural 

abstraction assumptions:  

 

Concretizing through Contextualizing 

Structural abstraction takes place on mental objects that, in Frege’s (1892a) sense, fall 

under a particular concept. These objects may be either concrete or abstract. Concreteness 

and abstractness, however, are not considered as properties of an object but rather as 

properties of an individual’s relatedness to an object in the sense of the richness of a person's 

representations, interactions, and connections with the object (Wilensky, 1991). From this 

point of view, rather than moving from the concrete to the abstract, individuals, in fact, begin 

their understanding of (advanced) mathematical concepts with the abstract (Davydov, 

1972/1990). The ascending from the abstract to the concrete requires a concretizing process 

where the mathematical structure is particularized by looking at the object in relation with 

itself or with other objects that fall under the particular concept. The crucial aspect for 

concretizing is contextualizing, that is, setting the object(s) in different specific contexts. 

Different contexts may provide various senses (Frege, 1892b) of the concept of observation.  

  

Complementizing through Recontextualizing 

The central characteristic of the structural abstraction framework is that while, within the 

empiricist view, conceptual unity relies on the commonality of elements, it is the 

interrelatedness of diverse elements that creates unity within the approach of structural 

abstraction. The process of placing objects into different specific contexts allows 

particularizing essential components. Structural abstraction, then, means attributing the 

particularized meaningful components of objects to the mathematical concept. Thus, the core 

of structural abstraction is complementarity rather than similarity. The meaning of advanced 

mathematical concepts is developed by complementizing diverse meaningful components of 

a variety of specific objects that have been contextualized and recontextualized in multiple 

situations. This perspective agrees with van Oers’ (1998) view on abstraction as related to 

recontextualization instead of decontextualization.  

 

Complexifying through Complementizing  

The structural abstraction framework takes the view that knowledge is a complex system 

of many kinds of knowledge elements and structures. Complementizing implies a process of 

restructuring the system of knowledge pieces. These knowledge pieces have been constructed 

through the above-mentioned process or are already constructed elements coming from other 

concept images, which are essential for the new concept construction. The cognitive function 

of structural abstraction is to facilitate the assembly of more complex and compressed 

knowledge structures. Taking this perspective, we construe structural abstraction as moving 

from simple to complex knowledge structures, a movement with the aim to build coherence 

among the various knowledge pieces through restructuring them. 

 



 Emerging Insights from the Structural Abstraction Framework 

In this section, we summarize emerging insights we gained, and still gain, by using the 

evolving framework of structural abstraction retrospectively as a lens through which findings 

on students’ (re-)construction of the limit concept of a sequence were reinterpreted. The study 

by Pinto (1998) provides the context in which she identified mathematics undergraduates’ 

sense-making strategies of formal mathematics. From a cross-sectional analysis of three pairs 

of students, two prototypical strategies of making sense could be identified, namely 

‘extracting meaning’ and ‘giving meaning’: 

“Extracting meaning involves working within the content, routinizing it, using it, and 

building its meaning as a formal construct. Giving meaning means taking one’s personal 

concept imagery as a starting point to build new knowledge.” (Pinto, 1998, pp. 298-299) 

The literature on abstraction-from-actions provides several accounts of how students 

construct a mathematical concept compatible with their strategy of ‘extracting meaning’; 

however, there are almost no accounts of how students construct a concept compatible with 

their strategy of ‘giving meaning’. It is important to note that the evolving  framework of 

structural abstraction is problem driven, that is, addressing the need of bringing light into the 

complexity of students’ knowing and learning processes compatible with their strategy of 

‘giving meaning’, rather than filling a theoretical gap just because it exists. The 

reinterpretation of empirical data on students’ strategies of giving meaning in the light of the 

theoretical framework of structural abstraction proved to be particular fruitful  - not only to 

provide deeper insights into the strategy of giving meaning but also as a way to deepen our 

understanding of the phenomenon of structural abstraction that revealed to new theoretical 

development (Pinto & Scheiner, 2016; Scheiner & Pinto, 2014). In the following pages, we 

highlight the main theoretical advancements.    

The idea of complementizing meaningful components underlying the structural 

abstraction framework reflects the idea that whether an individual has ‘grasped’ the meaning 

of a mathematical concept depends on the specific context where the objects falling under the 

particular mathematical concept have been placed in. This supports Skemp’s (1986) 

viewpoint that “the subjective nature of understanding […] is not […] an all-or-nothing state” 

(p. 43). The reanalysis of the data indicates that the object of researchers’ observation should 

be directed to students’ partial constructions of the limit concept. These partial constructions 

may be specific and productive to particular contexts but may remain not fully connected and 

may be unproductive in other contexts (for instance, in making sense of the formal 

definition). The empirical data shows that, in the case of the students who give meaning, 

several meaningful elements and relations in understanding the limit concept of a sequence 

are involved, although a few elements are missing (or distorted). However, some students are 

able to (re-)construct some meaningful components at need by making use of their partial 

constructions, while others are not able to do so.  

The reanalysis indicates that some students have developed resources that enable them to 

(re-)construct the limit concept of a sequence at need. Scheiner and Pinto (2014) presented a 

case where a student developed a generic representation of the limit concept of a sequence 

that operates well in several, although not all, contexts and situations. This particular 

representation, however, allows the student to (re-)construct the limit concept in other 

contexts and situations. The reinterpretation of the data sheds light on the phenomenon that 

individuals may do not ‘have’ all relevant meaningful components, but, rather, they may have 

resources to generate some meaningful components and make sense of the context at need. In 

that sense, the ‘completeness’ of the complementizing process cannot ever be taken as 

absolute.   



Several scholars suggested exposing learners to multiple contexts and situations. An 

important insight from using the structural abstraction framework retrospectively is that 

exposure to multiple contexts is at least important for particularizing meaningful components: 

various objects falling under a particular mathematical concept have to be set into different 

specific contexts in order to make visible the meaningful components or mathematical 

structure of these objects. In so doing, the objects may be ‘exemplified’ through a variety of 

representations, in which each representation has the same reference (the mathematical 

object); however, different representations may express different senses depending on the 

selected representation system (see Fig. 2). The distinction between sense and reference has 

been specified by Frege (1892b) in his work Über Sinn und Bedeutung, indicating both the 

sense and the reference as semantic functions of an expression (a name, sign, or description). 

In short, the former is the way that an expression refers to an object, whereas the latter is the 

object to which the expression refers. According to Frege (1892b), to each representation 

correspondents a sense; the latter may be connected with an idea that can differ within 

individuals since people might associate different senses with a given representation. Though 

multiple contexts and situations are needed, a new context that does not provide a new sense 

will unlikely to be productive for the concept construction. The framework indicates that the 

nature of the contexts the objects are set is determinative of their value toward the 

complementizing process.  
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Fig. 2: Reference, sense, and idea  

Research also indicates that students may have difficulties with the relationships between the 

sense and the reference as well as difficulties in maintaining the reference as the sense 

changes (Duval, 1995, 2006). Thus, based on the insights we have gained from reanalyzing 

the data (Pinto & Scheiner, 2016; Scheiner & Pinto, 2014), we can assume that these 

difficulties may (at least partly) be overcome by providing students a particular resource 

(such as a generic representation of the mathematical concept) that serves as a guiding tool in 

complementizing the meaningful components indicated in the different senses. From this 

perspective, a ‘representation for’ is a tool that provides theoretical structure in constructing 



the meaning of the concept of observation. It necessarily reflects essential aspects of a 

mathematical concept but can have different manifestations (Van den Heuvel-Panhuizen, 

2003). Concerning the learning of the limit concept of a sequence, the reinterpretation of the 

data indicates that a slightly modified version of a student’s representation (see Fig. 3) may 

support the complementizing process when the limit concept is recontextualized. 

N
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Fig. 3: A generic representation for learning the limit concept of a sequence  

Notice that this generic representation for learning the limit concept of a sequence takes 

account of several students’ common conceptions identified in the research literature, 

including those as (1) the limit is unreachable, (2) the limit has to be approached 

monotonically, and (3) the limit is a bound that cannot be crossed (see Cornu, 1991; Davis & 

Vinner, 1986; Przenioslo, 2004; Tall & Vinner, 1981; Williams, 1991). 

The reanalysis of the empirical data gained from Pinto’s (1998) study has shown that 

students giving meaning built a representation of the concept and, at the same time, used it as 

a representation for recognizing and building up knowledge – the reconstruction of the formal 

concept definition, for instance. The analysis shows that these students consistently used 

representations of mathematical objects to create pieces of knowledge; or, in other words, the 

representations were actively taken as representations for emerging new knowledge and 

making sense of the context and situation. This shift from constituting a representation of the 

limit concept to using this representation as a representation for (re-)constructing the limit 

concept in other contexts can be described in terms of shifting from a model of to a model for 

(Streefland, 1985) – a shift from an after-image of a piece of given reality to a pre-image for 

a piece of to be created reality. This mental shift from ‘after-image’ to ‘pre-image’ indicates a 

degree of awareness of the meaningful components and the complexity of knowledge 

structure that allows the transition from a ‘representation of’ as a result of various 

representations expressing specific objects set in different contexts to a ‘representation for’ 

constructing and reconstructing the limit concept, inter alia, in formal mathematical 

reasoning. We suggest that a generic representation, as presented in Fig. 3, may provide an 

instructional tool that supports raising the awareness of meaningful components in learning 

the limit concept of a sequence. In other words, such a generic representation may direct 

students’ perception of meaningful components.    
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