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Although it is frequently a required course, many secondary teachers view real analysis as 
unnecessary and unrelated to teaching secondary mathematics. In accord with a proposed model 
for improving the teaching of advanced mathematics courses for teachers, we implemented a 
course that framed real analysis content by ‘building up from’ and ‘stepping down to’ teaching 
practice. In this paper, we describe how this model was implemented in a single module and 
analyze secondary mathematics teachers’ engagement in and reflections on the desired 
pedagogical aims, which provide evidence that they saw what they learned in the real analysis 
module as being useful for informing their pedagogical practice. 
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In the United States, prospective secondary mathematics teachers usually are required to take 
a substantial number of courses in advanced mathematics, including real analysis. However, 
while mathematical organizations believe that a mastery of advanced mathematics is important 
for teaching secondary mathematics (e.g., CBMS, 2012), research has also shown that 
completing courses beyond a fifth course in university studies – which is where advanced 
mathematics courses fall – yields very minimal gains in a secondary mathematics teachers' 
efficacy (Monk, 1994). Indeed, many students do not perceive any relevance between advanced 
mathematics and the teaching of high school mathematics (e.g., Zazkis & Leikin, 2010). In this 
paper, we address the following broad question: Given that prospective teachers are required to 
complete courses in advanced mathematics, how can we design these courses so that they 
productively inform teachers' future pedagogy? We look specifically at one module in a real 
analysis course designed according to this aim, and consider how the prospective and practicing 
teachers (PPTs) engaged in and reflected on a particular pedagogical practice. 

 
Literature and Theoretical Perspective 

A Model for Teaching Secondary Teachers Advanced Mathematics 
From our point of view, the belief that completing a course in real analysis will improve a 

PPT’s ability to teach secondary mathematics has been based on a traditional view of transfer 
from the cognitive psychology literature (e.g., Perkins & Salomon, 2002). More specifically, 
there is an assumption that as a byproduct of learning advanced mathematical content, PPTs will 
better understand secondary mathematics content and will consequently respond differently to 
instructional situations in the future – a tenuously presumed “trickle down” effect (Figure 1a). 
Given the notorious difficulties in achieving this type of transfer, it is not surprising that PPT’s 
experience in real analysis often does not improve their teaching. In Figure 1b, we propose an 
alternative instructional model (Wasserman et al., 2016). This model is based on two premises. 
The first is the knowledge that PPTs learn should be inherently practice-based and applicable to 
the actual activity of teaching (e.g., Ball, Thames, & Phelps, 2008). The second is that PPTs will 
be more likely to make connections between real analysis and pedagogical practice if what they 
learn is situated within the context of teaching (e.g., Ticknor, 2012). Our model is composed of 



two parts: building up from practice and stepping down to practice. To build up from (teaching) 
practice, the real analysis content is preceded by a practical school-teaching situation. The 
building-up portion provides a context that sets the stage for the study of real analysis content in 
ways that are both relevant to teachers’ practices and particularly well-suited to being learned in 
real analysis. The second part, stepping down to (teaching) practice, then uses the mathematical 
ideas from real analysis as a means to reconsider the pedagogical situation that began the 
module, as well as other relevant pedagogical situations. Stepping down to practice explicitly 
clarifies the intended mathematical and pedagogical aims. In between building up from and 
stepping down to practice, the real analysis topics are covered in ways true to its advanced 
character with formal and rigorous treatment, but the tasks make explicit what connections and 
implications these have for both secondary mathematics and its teaching.  

 
Figure 1a. Implicit model for advanced mathematics 
courses designed for teachers 

 
Figure 1b. Our model for advanced mathematics courses 
designed for teachers 

An Example of our Model: Considering Derivative Proofs as “Attending to Scope” 
In their professional work, teachers must explain content, practices, and strategies (e.g., 

TeachingWorks, 2016); we regard a particularly important facet of providing an explanation as 
being attentive to the scope of that explanation. For example, in trying to help elementary 
students understand subtraction, some teachers may state: “you cannot subtract a larger number 
from a smaller one.” This explanation has a limited scope—it is only accurate when one is 
considering positive numbers – and can hinder students’ future mathematical learning (e.g., Ball 
& Bass, 2000). Real analysis, with its rigorous proofs and its attention to the number sets to 
which a statement applies (e.g., the Intermediate Value Theorem requires the completeness 
axiom and consequently applies to R but not Q), is a domain in which attention to scope can be 
learned. In a real analysis course, students are expected to study and produce rigorous proofs of 
the common differentiation rules, such as the power rule and the product rule. (See, for instance, 
the textbooks of Abbott, 2015, and Fitzpatrick, 2006.) In the module that we describe, we use 
these real analysis proofs to highlight the importance of attending to the scope of a statement, 
and leverage them to help foster developing this desirable pedagogical practice.  

Building up from practice. We began the module by presenting PPTs with the following 
situation: “Mr. Ryan teaches everything from Pre-Algebra to Calculus. The following scenes are 
snapshots from his classes at different times during the year.” Using cartoons (which are not 
included for space purposes), two of Mr. Ryan’s statements throughout the year were depicted: 
the Exponents statement, “Exponents are just repeated multiplication,” and the Power rule 
statement, “If you see a function with an exponent, to take the derivative, you bring down the 
exponent to the front and subtract one from the exponent” [on the board was written f(x)=2x3]. 
From this cartoon, PPTs were first asked to “Evaluate the pedagogical quality of each one of 
these explanations.” We note that these two statements are limited in scope: exponents can only 
be viewed as repeated multiplication if the exponent is a positive integer, and the power rule only 
works for power functions. Next, students were shown a typical proof of the power rule for 
differentiation, using the binomial expansion of (x+h)n. They were asked to identify for which 



sets the proof would be valid (N, Z, Q, or R), with the point being that this proof, which was 
likely familiar and is often presented to calculus students, is only valid for natural numbers. 

Real analysis. The real analysis portion of the course consisted of the presentation of proofs 
of the power rule, the product rule, the quotient rule, the chain rule, and the inverse function rule. 
A progression of proofs of the power rule (for f(x)=xn, f’(x)=nxn-1) was presented that differed 
depending on the scope (i.e., for natural-numbered exponents, for (non-zero) integer-numbered 
exponents, etc.), and the proofs of the product rule, quotient rule, chain rule, and inverse function 
rule were provided so that they could be used for the power rule proofs. 

Stepping down to practice. After the real analysis was presented, PPTs were invited to revisit 
the classroom scenario presented earlier. They were also asked on their homework to evaluate 
the pedagogical quality of two other explanations that were limited in scope, which we called the 
Perimeter statement (“The perimeter is just the sum of all the side lengths”) and the Add zero 
statement (“Remember, to multiply a number by ten, just add a 0 to the end.”). Finally, PPTs 
were asked write a journal entry in which they reflected on: “What, if anything, did you find 
helpful for your teaching in this week’s class? If there were helpful aspects, specify in what ways 
they might influence your teaching – if nothing was helpful, explain why.” 

 
Methodology 

Research Context, Participants, and Data Collection 
We designed an experimental real analysis course in which each session was designed using 

the model presented in Figure 1b and described above. We implemented this course with 32 
PPTs, 31 of whom agreed to participate in our research study. In this paper we focus on the 
Attention to Scope module, which took place across two 100-minute sessions. We collected and 
analyzed three sources of data: (i) we audio- or video-recorded all students collaboratively 
working on the module’s activities; (ii) we collected their homework responses to the Perimeter 
statement and the Add zero statement; and (iii) we collected their reflective journal assignments 
for what they learned from these modules.  

Analysis 
We coded each source of data in the following way. For (i), to analyze PPT’s in-class 

activity, we had recordings from five tables (T1, T2, T3, T4, T5), each containing about six 
students. When the groups were analyzing Mr. Ryan’s exponent and power rule explanations, we 
used an open coding scheme in the style of Strauss and Corbin (1990) to capture the aspects of 
the classroom scenario to which the PPTs attended. When asked to cite the limitations of the 
proof of the power rule using the binomial expansion, we recorded each group’s answers and the 
justification for their answers. For (ii), when coding the homework responses, we determine if 
the PPTs mentioned a limitation in scope for the statement and whether this limitation in scope 
was mathematically accurate. For (iii), we used an open coding scheme to document the category 
of responses that were present in PPT’s reflective journal entries. 

  
Results 

We organize the presentation of results from our analysis in terms of their support for three 
particular claims: Claim 1) When evaluating the pedagogical quality of a teacher’s statement, 
PPTs increased the attention they gave to the mathematical scope and limitations of a statement; 
Claim 2) PPTs valued the idea of attending to the scope and language of an explanation for their 



teaching; and Claim 3) Our model contributed to the goals of the module, particularly via the use 
pedagogical discussions to motivate the real analysis and vice versa. 

To document Claim 1, we argue that PPTs showed limited attention the scope of Mr. Ryan’s 
explanations at the start of the module, but that PPTs showed increased attention to scope on 
their homework assignment. When considering Mr. Ryan’s explanations at the start of the 
module, we note that all tables were engaged with the task, and all evaluated the pedagogical 
quality of the exponents statement and the power rule statement negatively and gave reasons for 
their justification. At each table, a number of pedagogical concerns were raised. These included, 
for example, concerns about what students might understand ‘repeated multiplication’ to mean 
(e.g., “2x3x5x7” (T1)), and whether ‘bringing down the exponent to the front’ might be unclear 
(e.g., “It could be 23, not 6” (T3)). However, for some tables, this was the extent of their 
evaluations – focusing on the ‘explanation of the mathematics’ and not the ‘mathematical 
aspects of the explanation.’ Indeed, specifically in consideration of scope, only two tables (T3 
and T4) attended to the limitations of scope for both statements, one table (T5) considered the 
limitation of scope with the exponents statement but not the power rule statement, and the other 
two tables (T1 and T2) did not attend to scope at all. That is, only 2 of 5 tables were consistent in 
their attending to the limited scope of both explanations. In contrast, however, on the homework 
assignment, both for the Perimeter and the Add Zero statements, all 31 PPTs correctly noted the 
limited scope of these statements. In addition, the quality of their attention to mathematical scope 
in the HW responses also increased. Even for the two tables that did so initially (T3 and T4), the 
exploration of the mathematical limitations of the statements was relatively narrow – they did not 
attempt to exhaust the possible scenarios. Each table only identified one instance where the 
power rule statement was limited (i.e., sin2(x)) – neither table discussed, for example, the 
derivative of ex. In the HW exercises, however, the quality of the PPTs exploration of 
mathematical limitations was richer and more exhaustive. Both within individual responses as 
well as collectively across all PPTs, there was greater variety of limitations referenced (i.e., 
straight/curved, closed/open, exterior/interior lines, single/composite figures, 2D/3D) – indeed 
some of their discussions went beyond what was initially anticipated. We regard both the 
increased number of PPTs as well as the improved quality of responses as supporting Claim 1. 

We document Claim 2 based on PPT’s written reflections on what they learned from this 
module. In general, a common theme from PPT’s written reflections was that they specifically 
valued the desirable pedagogical idea of attending to the scope and language of an explanation 
for their teaching – primarily addressing the mathematical precision of their language with 
students. Of the 27 PPTs who submitted reflections, 25 identified this idea as both: i) specifically 
stemming from the real analysis module; and ii) valuable for their teaching. We see both of these 
aspects in the following response that is representative of their reflections: “This lesson made me 
realize that as a teacher I must pay close attention to what I am saying. When I make statements 
that have errors, I need to know what loopholes or misconceptions held in my statement and be 
conscious of these as I create examples and answer questions” (S1). Here, it is worth reminding 
the reader that the PPTs were not obliged to say that they learned anything useful from the real 
analysis class (an option that some PPTs chose when reflecting on other modules). Within their 
statements, a few subthemes about implementation considerations arose: 1) scaffold definitions, 
beginning simple but getting increasingly rigorous (6 responses); 2) make sure explanations were 
not just procedural (5 responses); and 3) take into account the teaching context when considering 
the rigor and accessibility of explanations used (7 responses). In summary, we take this as 
evidence that PPTs saw pedagogical value in this module. 



Lastly, we consider Claim 3 about the contribution of the model toward these aims. Notably, 
the data supporting this claim is anecdotal; however, we regard reflection on the model as 
important, and the responses from some students as suggestive about its contribution. First, we 
explore the possible value that the pedagogical situation may have added to the real analysis. 
Within PPTs’ evaluation of Mr. Ryan’s statements initially, pedagogical quality hinged 
somewhat on the mathematical scope and limitations. Thus, when transitioning to the real 
analysis proofs, PPTs appear to have given additional gravitas to considering mathematical 
limitations because of the related professional value, and their sense of the proofs may have been 
similarly tied to these limitations. As one instance, upon realization that the first power rule 
proof was limited to N, one student concluded: “This proof takes anything that I’ve ever believed 
in... Like here’s a proof. Not anymore! Like this is the proof that I’ve always taught. And now, 
I’m like, everything about this is wrong” (T3). That is, the negative pedagogical evaluations 
appear to have prompted further mathematical motivation. Second, we explore the potential 
value that the real analysis may have added to accomplishing the desired pedagogical aims. 
Notably, the sequence of real analysis content explicitly modeled this attention to scope. And 
although one might do this without real analysis, at least some PPTs made this link and reflected 
on the value: “Seeing the connection between the analysis content and two very different 
concepts taught in high school was particularly useful.... the progression we took in the proofs 
from each set of numbers was a very elegant way of showing the different methods of proof, 
showing the flaws within each…” (S6). We see these – and other – comments as supporting the 
idea that the interaction between pedagogical discussion and real analysis was mutually 
beneficial to developing both.  
 

Discussion and Conclusion 

The analysis and reporting in this paper of one module from an experimental real analysis 
course – a single case study – sought to explore the broad issue of how advanced mathematics 
courses can be designed to inform PPTs pedagogical practice. In particular, the data from the 
study support the claim that, after engaging in the ‘Attending to Scope’ module from the real 
analysis course, the PPTs both increased their attention to (Claim 1) and valued (Claim 2) the 
desirable pedagogical practice of attending to the mathematical scope and limitations in teachers’ 
explanations. By design, the real analysis content was both tightly connected to and framed by 
this pedagogical practice; however, as was evident from some of the tables of PPTs (i.e., T3, T4), 
one does not have to learn real analysis to be able to attend to the scope and limitations of 
secondary mathematics explanations. However, since a real analysis course already sort of 
inherently models this idea in both the precision of statements and progression of proofs, it 
seems sensible to exploit this connection for teachers. Indeed, the teachers in this study, overall, 
increased their attention to and valued this pedagogical practice. The anecdotal evidence for 
Claim 3 also seems to support at least one of the ways in which the model may have facilitated 
these goals. Thus, we see this as evidence that by framing real analysis content with pedagogical 
situations, in addition to learning real analysis, PPTs can also learn important teaching ideas. 
Further work studying how best to mathematically prepare secondary teachers is needed, 
including the degree to which this particular model is productive and/or needs refinement, and 
could help guide improved design and implementation of advanced mathematics courses for 
secondary teachers. 
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