
Conceptual Analysis in Cognitive Research: Purpose, Uses, and the Need for Clarity 
 

Alan E. O’Bryan 
Arizona State University 

 
This theoretical paper discusses conceptual analysis of mathematical ideas relative to its place 
within cognitive learning theories and research studies. In particular, I highlight specific ways 
mathematics education research uses conceptual analysis and discuss the implications of these 
uses for interpreting and leveraging results to produce empirically tested learning trajectories. 
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Cobb (2007) argued that mathematics education “can be productively viewed as a design 
science, the collective mission of which involves developing, testing, and revising conjectured 
designs for supporting envisioned learning processes” (p. 7). This requires that researchers’ work 
leverages scientific methods to inform design (at the instructional, curricular, or institutional 
level) that positively impacts student learning. 

Thus, a useful way to characterize cognitively-oriented research goals is the production of 
empirically tested learning trajectories that provide opportunities for students to construct ideal 
ways of reasoning about mathematical ideas within a coherent trajectory spanning their entire 
mathematical careers.1 Conceptual analysis (Thompson, 2008a) plays an important role in this 
work, yet researchers are not always explicit about how they use conceptual analysis, nor are 
they clear about how conceptual analysis of an idea contributes to both the design and refinement 
of interventions that contribute to the broader goal of advancing knowledge in the field. 

In this paper I will discuss conceptual analysis of mathematical ideas relative to its place 
within cognitive learning theories, highlight different ways that conceptual analysis is used in 
specific research studies, and explore how these uses contribute in different ways to achieving 
the overall goals of cognitively-oriented mathematics education research. 

 
The Importance of Theory in Mathematics Education Research 

Conceptual analysis focuses on defining mental activity characterizing both real and 
epistemic individuals’ meanings, and as such derives from general constructivist principles. 
diSessa and Cobb (2004) and Thompson (2002) both describe theoretical perspective hierarchies 
starting from broader background theories like Piaget’s (1971) genetic epistemology to more 
narrow domain-specific theories that “entail the conceptual analysis of a significant disciplinary 
idea…with the specification of both successive patterns of reasoning and the means of 
supporting their emergence” (diSessa & Cobb, 2004, p. 83). Background theories serve “to 
constrain the types of explanations we give, to frame our conceptions of what needs explaining, 
and to filter what may be taken as a legitimate problem” (Thompson, 2002, p. 192). Domain-
specific theories address “ways of thinking, believing, imagining, and interacting that might be 
propitious for students’ and teachers’ mathematical development” (p. 194). 

 That conceptual analysis originated from radical constructivism has implications for its 
character and purpose. A description of what it means to understand a mathematical idea should 
be phrased in terms that reflect a researcher’s epistemology, and not in a faint or elusive way. 
This is why conceptual analysis, as defined by Glasersfeld (1995), Steffe & Thompson (2000), 
                                                 
1 The use of “ideal” here is framed as a goal even if consensus is never reached. Refinements to improve the 
effectiveness and coherence of students’ mathematical experiences is the manifestation of this goal in practice. 



and Thompson (2008a), is a description of cognitive states and processes. Grounding conceptual 
analysis in descriptions of mental actions and schemes attunes us to focusing on important ways 
of understanding foundational ideas that influence students’ abilities to construct and leverage 
productive images of sophisticated ideas articulated by a researcher’s learning goals and 
hypothetical learning trajectory (Simon, 1995). 

 
Conceptual Analysis, Hypothetical Learning Trajectories, and Teaching Experiments 
Thompson (2008a) defined conceptual analysis as a description of “what students must 

understand when they know a particular idea in various ways” (p. 42) and outlined four uses:  
1) to build models of students’ thinking by analyzing observable behaviors, 2) to outline ways of 
knowing potentially beneficial for students’ mathematical development, 3) to outline potentially 
problematic ways of knowing particular ideas, and 4) to analyze coherence in meanings among 
some set of ways of knowing. From a Piagetian-constructivist perspective, understandings are 
organizations of mental actions, images, and conceptual operations. Describing an 
understanding—either actual or intended—therefore involves specifying the mental actions, 
images, and operations that constitute it. Conceptual analysis provides clarity on the mental 
actions that characterize particular understandings, their potential origins, and their implications 
for subsequent mathematical learning. Conceptual analysis does not produce a list of 
mathematical facts or particular learning objectives. Conceptual analysis is about articulating the 
cognitive processes that characterize particular understandings, which serves as a basis for task 
design and shapes researchers’ identification of students’ mathematical thinking and learning. 
Thus, conceptual analysis is a form of theory itself—an operationalization of what diSessa and 
Cobb (2004) call an orienting framework in the context of mathematics education research. 

Ellis, Ozgur, Kulow, Dogan, & Amidon (2016) joined others (e.g., Clements & Samara, 
2004; Sztajn, Confrey, Wilson, & Eddington, 2012) in stressing the importance of learning 
trajectory research. There is no consensus definition for hypothetical learning trajectory yet. 
Most descriptions are refinements of Simon’s (1995) original definition as “[t]he consideration 
of the learning goal, the learning activities, and the thinking and learning in which students might 
engage” (p. 133). Hypothetical learning trajectories, as indicated by their name, should be 
framed as hypotheses to be tested in empirical studies, which often employ the teaching 
experiment methodology (Steffe & Thompson, 2000). As such, each of the three components of 
a hypothetical learning trajectory must be clearly articulated in enough detail so that during a 
teaching experiment, and in retrospect, it is possible for the researcher to provide empirical 
support for accepting or rejecting any part of the hypothesis. A teaching experiment, as described 
by Steffe and Thompson (2000), is the means by which to assess and refine hypothetical learning 
trajectories informed by a conceptual analysis. Teaching experiments have three parts, and 
different uses of conceptual analysis contribute to each part in different ways (see Figure 1). 

 
Figure 1. Parts of a teaching experiment. 

Thinking in these terms, we can clarify how the results from different research studies contribute 
to the goal of creating empirically tested ideal mathematical learning trajectories. 



Examples of Different Uses of Conceptual Analyses 
Since researchers’ contributions to learn trajectory research depend on how they used 

conceptual analysis, their conceptual analyses constitute an interpretive lens to make sense of 
their data and indicate the specific ways that others should leverage and interpret their work. The 
following three examples will help to illustrate this point. Each are drawn from compelling, 
influential research related to the teaching and learning of exponential growth. 

Confrey and Smith’s Retrospective Conceptual Analysis: Modeling Student Reasoning 
Confrey (1994) and Confrey and Smith (1994, 1995) developed robust descriptions for 

students’ images of multiplication, ratio, covariation, function, and rate based on retrospective 
conceptual analysis of teaching interviews. Student working through tasks like paper folding and 
predicting future values for an item retaining 90% of its value each year leveraged meanings for 
multiplication, rate of change, and function that often differed from conventional meanings. By 
carefully modeling students’ schemes, Confrey and her colleagues described productive images 
that they claimed could be a powerful foundation for understanding exponential growth. 

Images of multiplication, covariation, function, rate of change, and exponential growth. 
Confrey (1994) described thinking about multiplication via splitting. A split is the action of 
creating equal copies of an original amount or breaking an original amount into equal-sized 
parts. She then defined multiplication as the result of some n-split on an original whole and 
division as examining one of the equal parts of the split relative to the whole. Ratios rather than 
differences are then the natural means of comparison when conceptualizing splitting. Confrey 
and Smith (1994, 1995) described students engaging in covariational reasoning when 
coordinating splits and defined covariation discretely as a process of synchronizing successive 
values of two variables. A function relationship is then “the juxtaposition of two sequences, each 
of which is generated independently through a pattern of data values” (1995, p. 67) with specific 
function characteristics emerging from repeated actions during this coordination.  

Confrey and Smith argued that students reasoning covariationally developed notions of rate 
that differed from conventional definitions. Some students coordinating arithmetic and geometric 
sequences to reason about exponential growth described the relationship as having a constant 
rate of change, meaning that thinking about rates as a ratio of additive differences is not an 
inevitable choice for students. They proposed defining rate in a way that respects students’ 
intuitions. A rate is a unit per unit comparison where unit refers to what remains constant in a 
repeated action (Confrey, 1994). Thus, changes (and rates) can be conceived of additively or 
multiplicatively. Confrey and Smith argued that coordinating repeated addition to move through 
an arithmetic sequence with repeated multiplication to move through the geometric sequence and 
interpolating values by coordinating arithmetic means with geometric means is productive 
foundation for understanding exponential growth. 

Commentary. Confrey and Smith’s work modeled students’ constructed schemes from 
empirical data and theorized about the utility of specific meanings for multiplication, covariation, 
function, and rate of change for understanding exponential growth. This kind of retrospective 
conceptual analysis is very useful for characterizing the way that some students productively 
reasoned about specific tasks spontaneously, including novel ways of thinking not typically 
emphasized in curricula. Confrey and Smith were not focused on generating detailed learning 
trajectories,2 nor did they consider the implications for their specific meanings on understanding 

                                                 
2 Weber (2002a, 2002b) and Ström (2008) both studied the implications of Confrey and Smith’s conceptual analysis, 
as did Amy Ellis and her colleagues. I will say much more about Ellis et al.’s work later in this paper. 



sophisticated mathematical ideas students will encounter in the future such as the Fundamental 
Theorem of Calculus (FTC). Their work was limited to modeling students’ meanings for 
mathematical ideas within a fairly narrow scope of mathematical tasks and considering 
implications of these meanings for what they conceived as related ideas.  

There are some limitations in studies using conceptual analysis in this manner, and 
understanding these limitations is critical to putting their results in perspective. In teaching 
interviews and experiments, results are always impacted by a researcher’s choice of tasks and 
initial assumptions. For example, Confrey and Smith assumed that repeated multiplication is a 
useful foundation for defining exponential growth, and all of the tasks could be solved by (and 
perhaps encouraged) images of repeated multiplication. Since they were attuned to looking for 
productive ways of reasoning in these tasks, their conclusions depended on this initial 
assumption. Since results are influenced by the researchers’ initial assumptions and task 
selection, their work does not compare the relative strengths of various potential meanings and 
learning trajectories. That requires a different use of conceptual analysis that looks more broadly 
at issues of coherence in mathematical ideas at all levels, which is not what Confrey and Smith 
sought to achieve. Scientific and mathematical progress throughout history is almost entirely a 
story about breakthroughs in understanding that defy human expectations and intuition. Thus, we 
should expect that classifying students’ productive schemes for an idea will give us powerful 
insights into how individuals construct internally coherent schemes but not necessarily uncover 
ideal meanings we may want students to construct. 

Thompson’s Conceptual Analysis: Coherence of Mathematical Ideas Leading to Calculus 
Thompson’s (1994a) unpacking of the key ideas in calculus, particularly the FTC, motivated 

and informed his conceptual analysis for exponential growth (Thompson, 2008a). Thompson 
imagined a broadly coherent trajectory for students’ mathematical experiences focused on 
quantitative reasoning, covariational reasoning, and representational equivalence that could unite 
most topics from grade school mathematics through calculus (Thompson, 2008b). Thus, his 
conceptual analysis considers exponential functions as just one of many opportunities for 
students to develop and apply particular ways of thinking. 

Quantitative and covariational reasoning, rate of change, accumulation, and the FTC. 
Thompson’s meanings for covariation, function, and rate of change are different from Confrey 
and Smith’s because his goals are different. His work is grounded in quantitative reasoning, 
which describes conceptualizing a situation to form a quantitative structure that organizes 
relevant quantities (measureable attributes) and quantitative operations (new quantities 
representing a relationship between other quantities) (Thompson, 1988, 1990, 1993, 1994b, 
2011, 2012). If someone sees a situation as composed of quantities that change together and 
attempts to coordinate their variation, then she is engaging in covariational reasoning (Carlson, 
Jacobs, Coe, Larsen, & Hsu, 2002; Saldanha & Thompson, 1998; Thompson & Carlson, 2017). 
Sophisticated covariational reasoning involves linking two continuously varying quantities to 
create a multiplicative object, a unification that combines the attributes of both quantities 
simultaneously (Saldanha & Thompson, 1998; Thompson, 2011; Thompson & Carlson, 2017). 

Thompson (1994a, 1994b) and Thompson and Thompson (1992) outline an image of 
constant rate as a proportional correspondence of two smoothly covarying quantities. When one 
quantity’s magnitude changes by any amount, the other quantity’s magnitude changes 
proportionally. This was Newton’s image of rate that allowed him to conceptualize the 
relationship between accumulation and rate of change expressed formally in the FTC 
(Thompson, 1994a, 2008a). Over small intervals, he imagined that any two covarying quantities 



change together in a proportional correspondence. This can be modeled by a piecewise constant 
rate of change function and its corresponding piecewise linear accumulation function. The FTC 
describes how these two functions are related as the interval sizes tend to zero. See Figure 2. 

 
Figure 2. Piecewise linear accumulation function and piecewise constant rate of change function. 

Exponential functions. Building from his images of constant rate of change and the FTC, 
Thompson’s (2008a) conceptual analysis involved thinking about classifying functions based on 
similarities in their rate of change functions and imagining a function as emerging through 
accumulation. Specific to exponential functions, he conceptualized a relationship with a rate of 
change on some interval that is always proportional to the function value at the beginning of the 
interval. As the interval size decreases, the piecewise linear accumulation function converges to 
an exponential function. Thompson (1994a, 2008a) argued that this way of understanding allows 
a person to conceptualize both change and accumulation as happening simultaneously, makes it 
natural to imagine the function value growing continuously and producing outputs for all real 
number inputs, is consistent with a coherent way of reasoning about all function relationships, 
and leads to a productive operational understanding of the FTC. 

Commentary. Much like Confrey and Smith, Thompson’s work is not a detailed 
hypothetical learning trajectory.3 Thompson’s conceptual analysis is part of a broader, idealized 
web of ideas stretching from students’ first mathematical experiences through calculus. It does 
not consider students’ actual mathematical background experiences in modern classrooms, the 
cognitive load it places on students, or whether the ideas reasonably coincide with common ways 
students may attempt to spontaneously reason about tasks. It also depends on a different meaning 
for function relationships, how functions are categorized, and the foundational criterion for a 
relationship to be exponential. In Thompson’s conceptual analysis, exponential growth is related 
to repeated multiplication almost by coincidence and is not the foundational meaning.  

Ellis and Colleagues: From Exploratory to Hypothetical Learning Trajectory 
Ellis and her colleagues (Ellis, Ozgur, Kulow, Williams, & Amidon, 2012, 2015; Ellis et al., 

2016) mostly leveraged Confrey and Smith’s images of covariation, rate, and exponential growth 
to construct a rough exploratory learning trajectory surrounding a single context. Ellis et al. 
extended and clarified how Confrey and Smith’s ideas might productively support students’ 
understanding of exponential relationships and chose a situation where they conjectured students 
could easily justify that the function’s domain and range were not restricted to a set of discrete 
values. They built a Geogebra applet showing the image of a plant (the Jactus) with a height that 
varied exponentially with elapsed time. The applet’s user can vary the elapsed time by sliding the 
plant along the horizontal axis and its height would update in real time. The applet also displays 
the time elapsed and the plant’s height as an ordered pair as the user slides the plant horizontally.  

                                                 
3 Castillo-Garsow (2010) did produce a learning trajectory and empirical study based on this conceptual analysis. 



In designing their study, Ellis et al. anticipated, and later confirmed, that students’ initial 
models for exponentiation involved an informal image of repeated multiplication. Ellis et al. 
wanted students to leverage covariational reasoning to build a more robust image of exponential 
growth focused on coordinating multiplicative changes in one quantity with additive changes in 
another quantity. With this understanding, students might understand bx as both the possible 
height of a plant at some moment in time and as representation of a (multiplicative) change in 
height. Students working through the activities exhibited key shifts in their thinking reflecting 
increased attention to how the two quantities changed together over intervals of varying size. 
“[These] results…offer a proof of concept that even with their relative lack of algebraic 
sophistication, middle school students can engage in an impressive degree of coordination of co-
varying quantities when exploring exponential growth” (Ellis et al., 2012, p. 110). 

Commentary. Ellis et al. used conceptual analysis in three ways. First, they further 
unpacked Confrey and Smith’s conceptual analysis of exponential growth as students might 
construct it from images of coordinating additive and multiplicative changes. Second, they 
continuously modified and updated their exploratory learning trajectory and tasks throughout the 
study based on models of students’ schemes. These analyses, coupled with retrospective analysis 
on the empirical data, allowed them to craft highly detailed descriptions of students’ meanings at 
various points in time and how those meanings developed through interactions with tasks and 
teaching interventions (Ellis et al., 2016). The result is the foundation for a powerful hypothetical 
learning trajectory. Ellis et al. now have empirical grounding for theories on how students may 
come to construct specific meanings related to exponential growth and related ideas. The 
refinements from the exploratory research and their model for how students construct specific 
meanings in specific contexts is now a fully realized hypothesis for systematic testing. 

Ellis et al.’s work is an impressive example of critical work in developing empirically tested 
learning trajectories and demonstrates how initial exploratory work in developing an 
understanding of students’ scheme construction, like the work of Confrey and Smith, can be 
refined and expanded to contribute to important work on learning trajectories. However, as they 
note, “Our learning trajectory is an attempt to characterize the nature of the evolution of 
students’ thinking in a particular instructional setting” (2016, p. 153) and is thus only one of 
many possible learning trajectories. Like Confrey and Smith, their work assumes that repeated 
multiplication is the starting point from which to develop an understanding of exponential 
growth. In fact, the initial activities in their exploratory learning trajectory encouraged and then 
attempted to modify this reasoning. Their work does not extend to considering the long-term 
implications for students who develop their intended meanings compared to students with other 
potential meanings for exponential growth, nor does it (as of yet) seek to explain persistent 
challenges students encountered. This was not the role of the described study but does describe 
critical future research. 

Summary and Theoretical Implications 
A teaching experiment is a method of testing a research hypothesis (a carefully detailed 

hypothetical learning trajectory) informed by conceptual analysis that analyzes the degree to 
which (and aspects of) tasks and interactions that promoted specific abstractions. None of the 
research studies described in this paper satisfy these criteria of a formal teaching experiment 
because the empirical work, when present, was more exploratory in nature. However, each of 
them contribute to the goals of cognitively-oriented mathematics education research in powerful 
ways. Confrey and Smith described students’ schemes related to repeated multiplication based 
on spontaneous reasoning about particular mathematical tasks. Ellis et al. further unpacked these 



schemes and, based on retrospective analysis of empirical data, produced a well-defined 
hypothetical learning trajectory for specific meanings using specific tasks that now has the 
clarity and specificity necessary to be a scientific hypothesis. Thompson’s work takes a broader 
view and suggests ways of understanding exponential growth situated within a coherent body of 
mathematical ideas extending beyond a single topic. 

Currently there is no consensus on the exact meaning of a hypothetical learning trajectory. 
Ellis et al. (2016) have an excellent literature review detailing the different interpretations. In 
addition, reflecting on their work suggests that the field may benefit from greater clarity in 
defining different types of learning trajectories with the definitions influenced by the role of 
conceptual analysis. A potential starting point is given below. 

 Exploratory learning trajectory – Conceptual analysis (either based on a researcher’s 
analysis of mathematical ideas or based on empirical data) can suggest potentially useful 
ways of understanding particular ideas. A researcher then creates tasks and a rough 
exploratory trajectory for gathering empirical data on how students reason about specific 
contexts in specific settings. Since the enacted learning trajectory is continually modified 
based on modeling students’ emerging meanings, this is not yet a scientific hypothesis. 

 Enacted learning trajectory – An actual learning trajectory unfolded based on the 
exploratory learning trajectory. Conceptual analysis is used retrospectively to describe 
how students’ schemes changed as a result of their mathematical activity. 

 Hypothetical learning trajectory – This describes a specifically stated research hypothesis 
outlining specific targeted mental actions and schemes, specific tasks and a task 
sequence, and descriptions of how those tasks will contribute to students accommodating 
their schemes. The teaching experiment that tests this hypothetical learning trajectory 
seeks to accept or reject particular aspects of the hypothesis, and will ultimately result in 
refinement. Conceptual analysis is critical to the design of the learning trajectory and 
retrospectively in analyzing outcomes in the more formal teaching experiment. 

 Empirically supported learning trajectory – After potentially several rounds of 
refinement and testing with hypothetical learning trajectories, a researcher can articulate 
an empirically supported learning trajectory. In comparing the results and implications of 
competing empirically supported learning trajectories, researchers can move closer to a 
learning trajectory that supports the development of ideal ways of understanding. 

Any of these learning trajectories could be narrow in scope (focused on a particular mathematical 
idea) or grand in scope (focused on students’ learning as an arc from grade school through 
graduate level mathematics). Researchers’ questions of interest and how they use conceptual 
analysis dictate the type of learning trajectory they are developing and studying, and the scope of 
their work dictates their contribution to the field from models of students’ schemes relative to 
particular ideas to coherent mathematical experiences across many topics and grade levels. 

As researchers, we are obligated to not only produce scientifically-valid findings but also to 
communicate our work in ways that allow others to leverage our results to advance the collective 
mission of our design science. Being more explicit about the role of conceptual analysis in our 
work and having greater clarity on how our learning trajectory research contributes to design 
research can help us achieve this. I hope that my articulation of how different uses of conceptual 
analysis are relevant to developing different kinds of learning trajectories facilitates relevant and 
productive communication among cognitively-oriented, qualitative mathematics education 
researchers. 
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