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Covariation and covariational reasoning have become key themes in mathematics education 
research. In this theoretical paper, I build on the construct of covariation by considering cases 
where more than two variables relate to each other, in what can be called “multivariation.” I 
share the results of a conceptual analysis that led to the identification of four distinct types of 
multivariation: independent, dependent, nested, and vector. I also describe a second conceptual 
analysis in which I took the mental actions of relationship, increase/decrease, and amount from 
the covariational reasoning framework, and imagined what analogous mental actions might be 
for each of these types of multivariation. These conceptual analyses are useful in order to 
scaffold future empirical work in creating a complete multivariational reasoning framework. 
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The construct of covariation and the cognitive activities involved in reasoning about it have 
become important themes within mathematics education research (e.g., Carlson, Jacobs, Coe, 
Larsen, & Hsu, 2002; Moore, Paoletti, & Musgrave, 2013; Moore, Stevens, Paoletti, & Hobson, 
2016; Oehrtman, Carlson, & Thompson, 2008; Thompson, 1994). Yet, work on co-variational 
reasoning has essentially been limited to examining two variables changing in tandem with each 
other, perhaps with time as a mediator to that relationship (explicitly or implicitly). By contrast, 
as students continue to higher levels of science and mathematics courses, they encounter contexts 
in which there are more than two variables potentially changing in relation with one another. 
Note that I use the term “variable” in this paper to generally mean any potentially varying 
numeric value, including values of real-world quantities and mathematical function inputs and 
outputs. This theoretical paper is meant to build on the construct of covariation by explicitly 
considering cases where more than two variables (in addition to time) relate to and change with 
one another, in what can be termed “multivariation.” In particular, I share the results of a 
conceptual analysis in which I identified four different types of multivariation, each with its own 
potential set of mental actions for reasoning about it. I also share the results of a second 
conceptual analysis examining what “multivariational reasoning” might possibly look like for 
each type, in terms of analogous mental actions corresponding to those already documented for 
two-variable covariational reasoning. The results of these conceptual analyses are meant to 
scaffold future empirical work, by helping to inform study design and data analysis, which can 
be used to establish a complete multivariational reasoning framework. 

 
Covariation and Multivariation 

Over the past couple decades several researchers have been contributing to a carefully 
developed sense of what “covariation” means (Carlson et al., 2002; Castillo-Garsow, 2012; 
Confrey & Smith, 1995; Johnson, 2012; Saldanha & Thompson, 1998). The central theme to this 
work is that covariation consists of imagining “two quantities [i.e., variables] changing together” 
(Castillo-Garsow, 2012, p. 55) in which “they are changing simultaneously and 
interdependently” (Johnson, 2012, p. 315). The specific term “quantity” often has additional 
meaning beyond being only a numeric value, and usually implies a measurable quality of an 
object (Thompson, 1994). However, covariation has also been applied to purely mathematical 



functions that are not necessarily contextualized as relationships between physical quantities 
(Oehrtman et al., 2008; Thompson & Silverman, 2008). In this paper, I consider covariation of 
variables both in terms of physical quantities and mathematical functions. 

An important part of covariation, regardless of the variables involved, is the concept of time 
(Castillo-Garsow, 2012; Oehrtman et al., 2008; Thompson, 2011). Sometimes time can be 
explicitly present in the covariation as one of the two real-world quantities, such as distance and 
time. However, even for two non-time variables, or for a mathematical function, y = f(x), if one 
applies “smooth” covariational reasoning (see Castillo-Garsow, 2012), time must necessarily be 
involved in imagining the change in progress. The necessity of time resonates with the assertion 
in Oehrtman et al. (2008) that, “The idea of covariation is fundamentally that of parametric 
functions” (p. 38). Thus, for my purposes, if a variable “A” is said to be varying (or covarying 
with another variable), it can be thought of as changing in time, A(t). However, this change does 
not have to happen linearly in “real” time, but can be conceptualized to move forward quickly or 
slowly, or to move in reverse, or to pause at a given instant. 

 
Multivariation in the Current Literature and Conceptual Analyses 

I began thinking about the construct of “multivariation” during a study involving the limits of 
complicated expressions (Jones, 2015) and another study involving multiple, line, and vector 
integrals (Jones & Naranjo, 2017). These ideas were further stoked when I encountered the 
“partial derivative machine” at a RUME conference, in which it is not always possible to hold 
certain variables “constant” in order to use basic covariation (see Roundy et al., 2015). I also 
began to see in mathematics and science textbooks how many instances there were in which 
multivariation could be involved. I wish to make clear that I am in no way claiming to be the 
inventor of the notion of multivariation, and that ideas surrounding multivariation have, in fact, 
been present in the mathematics education research literature, including studies on the graphs of 
multivariate functions (e.g., Dorko & Weber, 2014; Martinez-Planell & Trigueros-Gaisman, 
2012; Weber & Thompson, 2014), on partial and directional derivatives (Bucy, Thompson, & 
Mountcastle, 2007; Martinez-Planell, Trigueros-Gaisman, & McGee, 2014, 2015), and on 
multiple integrals (McGee & Martinez-Planell, 2014). However, the main reason I believe this 
paper is needed is that while ideas pertaining to multivariation are present in the literature, 
multivariation as a construct in and of itself has essentially been implicit. Thus, there is still a 
need to explicitly discuss what multivariation and multivariational reasoning might consist of. 

This theoretical report consists of the products of two conceptual analyses (see Thompson, 
2008) meant to form the basis of future empirical work. The first conceptual analysis, presented 
in this section, focuses on what possible types of multivariation might exist. (The second analysis 
is described in the next section). To perform it, I looked through a large set of mathematics, 
science, and engineering functions and formulas, found mostly inside textbooks (e.g., Hibbeler, 
2012; Serway & Jewett, 2008; Stewart, 2015), and considered how the variables in them could 
be conceptualized as changing with respect to one another. This conceptual analysis led to the 
identification of four distinct types of multivariation: independent, dependent, nested, and vector. 

 
Four Types of Multivariation 

Here I describe the four ways I identified that more than two non-time variables might be 
“changing together” in a potentially “simultaneous and interdependent” way (Castillo-Garsow, 
2012; Johnson, 2012). I have stipulated non-time variables precisely because time is inherent in 
all types of variation, as discussed previously, whether univariation, covariation, or 



multivariation. Thus, time-parametric equations are not considered a separate type of 
multivariation, since they are already inherent in all types. 

Independent multivariation. The first type of multivariation I describe, independent 
multivariation, is probably the most commonly imagined type of multivariation in mathematics 
because of how we often work with multivariate functions, like z = f(x,y). In this type, there are 
multiple “input” variables (e.g., x and y) that each individually covary with an “output” variable 
(e.g., z), but where the “input” variables need not covary with each other. In other words, the 
covariations between each input variable with the output variable can be conceptualized as 
independent from each other. In contrast to covariation, a change in the output does not 
necessarily imply a change in one particular input, since the change in output could have 
happened as a result of covariation with a separate input variable. Next, I note that what counts 
as “input” and “output” does not necessarily need to be fixed (e.g., solving to get x = f(y,z)), so 
long as the covariations between each of the input variables and the output variable remain 
independent. I also note that this type of multivariation could be extended to include as many 
input variables as desired, such as for the function z = f(x1,x2,…,xn). 

Since each input variable covaries with the output variable, it might be tempting to think of 
this type of multivariation as simply basic covariation by holding all but one of the input 
variables constant at a time. While that can be true, what makes this distinct from two-variable 
covariation is that it is, in fact, possible to imagine all of the input variables changing at the same 
time, each having their own impact on the output variable. This is similar to the idea of 
directional derivatives (see Martinez-Planell et al., 2015), or to taking a surface defined by          
z = f(x,y) and tracing out a curve on it by parameterizing x(t) and y(t) over the interval a ≤ t ≤ b. 

This type of multivariation is present in many science contexts involving real-world 
quantities. The key is whether it is realistically and conceptually reasonable to hold certain 
variables constant while varying others. For example, force (an output variable) can be defined 
as the product of mass and acceleration (the input variables), as in F = ma. In this case, one can 
imagine holding m constant and changing a to produce changes in F, or holding a constant and 
changing m. Yet, what makes this “multivariation” rather than “covariation” is that m and a 
could be imagined to be changing simultaneously, yet independently, each producing concurrent 
changes in F. Note that m and a do not have to be the input variables, since one could imagine 
holding F constant and changing m to produce changes in a. 

Dependent multivariation. The second type of multivariation, dependent multivariation, 
more commonly arises in real-world contexts, since input variables for mathematical functions 
are typically conceptualized as, literally, “independent variables.” However, for certain scientific 
contexts it might not make sense to conceive of holding some variables constant while the others 
vary. In fact, some science educators have already brought up this idea, since “holding constant” 
is not always possible (e.g., see Bucy et al., 2007; Roundy et al., 2015). The main idea for this 
type of multivariation is that, rather than having several independent covariations between 
multiple “input” variables and a single “output” variable, a change in any variable produces 
simultaneous changes in all other variables. Further, as those other variables change, they also 
immediately induce changes in all other variables in the system. 

For example, if a fixed amount of gas is contained in a flexible balloon, the ideal gas law 
models the relationship between the volume, V, pressure, P, and temperature, T, of the gas 
through the equation PV= kT. However, unless certain laboratory conditions are imposed, it 
might not be realistic to hold P constant while T and V change with respect to each other. More 
realistically, if the temperature increases, the pressure and volume both increase simultaneously 



and their changes can feed back into the system immediately. Or, to pull from a rather different 
context, suppose an economist is examining how price, affected by demand and supply, is 
changing for a particular good in a market that is in flux. Again, it might not be realistic to 
imagine holding demand constant in order to manipulate supply and measure the corresponding 
changes in price. As the supply changes, both price and demand may change simultaneously as 
the market approaches a new equilibrium. 

To be clear, in this type of multivariation, I am not saying that it is not mathematically 
possible to hold one of the variables constant in order to enact calculations. However, my point is 
that these types of contexts cannot conceptually be fully accounted for only through multiple 
independent two-variable covariations. Rather, one would have to use mental actions that involve 
multiple variables all having simultaneous impacts on each other in order to reason accurately 
about the real-world processes. 

Nested multivariation. The third type of multivariation I describe, nested multivariation, 
comes from how one might conceptualize changes when the relationships between variables are 
based on the structure of function composition, such as z(y(x)) (for more on student 
understanding of function composition, see Ayers, Davis, Dubinsky, & Lewin, 1988; 
Breidenbach, Dubinsky, Hawks, & Nichols, 1992). For z(y(x)), if one imagines changes in x, 
then there are corresponding changes to y. Yet those changes in y now correspond to changes in 
z. While it is true that one can, in fact, think of direct two-variable covariation between x and z, 
nested multivariation conceptualizes the relationship as having intermediary variables. Thus, the 
difference between whether it is two-variable covariation or nested-variable multivariation is not 
inherently dependent on the structure of the formula or function. Rather, it is necessarily a 
product of how one conceptualizes the changes taking place. For example, for the equation y = 
sin2(x), it is true that one can imagine x and y changing directly with each other. However, it is 
also possible to imagine that as x increases, from say 0 to π/2, it produces corresponding 
increases in the value of “sin(x),” and that as the value of sin(x) increases, it in turn generates 
increases to the “sin2(x)” values. In other words, as one variable changes it induces a change in a 
second, which induces a change in a third variable (and potentially so on to include as many 
variables as desired). 

To describe an example from science, consider the formula from relativity relating velocity, 

v, with the relative mass of an object, m, given by 21 ( )om m v c   (c is the speed of light and 

mo is the relative resting mass). When I have asked students to describe what happens to mass as 
v approaches c, they tended to think through this formula piece by piece. They would first 
discuss how an increasing v made the ratio between v and c approach one. They would then 

discuss how that corresponded to 21 ( )v c  shrinking to zero, which lastly made the value of 

the entire expression tend toward infinity. To represent their thinking in mathematical notation, 
they essentially thought of the mass equation broken down into a ratio function, β(v) = v/c, which 

became an input for the Lorenz factor, 2( ) 1 1    , which in turn became the input for the 

mass, m(γ) = moγ. As explained previously, it is true that one can think of direct covariation 
between v and m. If one does so, then in that case they are employing covariational reasoning. 
However, if they imagine nested changes from v to β to γ and finally to m, then I argue they are 
employing nested multivariation reasoning. 

Vector multivariation. The last type of multivariation I describe, vector multivariation, may 
be the most cognitively complex and gets its name because it deals with multiple independent 
inputs each simultaneously associated with multiple independent outputs (i.e. a vector function). 



Thus, vector multivariation is essentially a generalized version of independent multivariation in 
that it consists of several independent multivariations each happening independently of each 
other. For a vector function, ( , ) ( , ) , ( , )F x y u x y v x y


, like with independent multivariation, 

one can think of holding, say, y constant and letting x vary, but in this case that variation 
corresponds to changes in both u and v at the same time. Further, imagining both x and y varying 
simultaneously leads to four pairs of independent covariations that could potentially need to be 
cognitively managed all together. As with all other types of multivariation, vector multivariation 
could be extended to include as many variables as desired, including several input or several 
output variables. 

For examples of vector multivariation, consider a vector field mapping R2 to R2. If one were 
to take a starting point (x,y) and increase the x-coordinate, tracing a horizontal line through the 
vector field, both the horizontal and vertical components of the vector field could be changing 
simultaneously. Similarly, if one increased the y-coordinate and traced vertically through the 
vector field, both components of the vector field could change. Now, for full vector 
multivariation, if one traced out a curve, C, in the x-y plane along which both x and y are 
changing simultaneously, one would have to coordinate how much x and y are each changing, 
and what the resulting changes in the horizontal and vertical components of the vectors are. This 

type of multivariation shows up in vector integrals, 
C
V dr
 

, and also occurs for functions with 

complex inputs and outputs, f : C→C. For complex functions, if the input complex variable 
changes along a curve in the complex plane, one would have to simultaneously attend to changes 
in the real and imaginary parts of the input variable, as well as the changes in the real and 
imaginary parts of the output variable. In science, this type of multivariation could be present in 
any context involving vector spaces, such as gravitational fields or electrical fields. One could 
imagine a particle tracing some path through those fields, with changes happening in each of the 
vector components as the path is traced out. 

Comparison of structures. To summarize this first conceptual analysis, Figure 1 shows the 
distinct conceptual structures for the four different types of multivariation (and covariation). Of 
course, each type of multivariation could be extended to include as many variables as desired. 

 
Figure 1. Comparison of structures for (a) basic covariation, (b) independent multivariation, (c) dependent 
multivariation, (d) nested multivariation, and (e) vector multivariation, where (b)–(d) could each be extended to 
include as many variables as desired. 

 
Covariational Reasoning and Multivariational Reasoning 

To describe the second conceptual analysis, I briefly return to basic two-variable covariation. 
Carlson et al. (2002) described five mental actions that pertain to increasingly sophisticated 
levels of covariational reasoning. The first three mental action levels are given as (p. 357): (1) 
“Coordinating the value of one variable with changes in another,” (2) “Coordinating the direction 
of change [i.e., increase or decrease] of one variable with changes in the other variable,” and (3) 
“Coordinating the amount of change of one variable with changes in the other variable.” For my 
purposes, I label these three mental actions as “relationship,” “increase/decrease,” and “amount.” 
The fourth and fifth mental action levels then progress to changing rates of change, marking a 



shift from reasoning about the two variables directly to reasoning about how a rate of change 
itself varies. For my conceptual analysis, I focused on what mental actions for each type of 
multivariation might be analogous to the relationship, increase/decrease, and amount mental 
actions from covariation. I do not include changing rates of change in this conceptual analysis at 
this point because of the potential complexity of multiple simultaneous changing rates of change. 
Rather, my conceptual analysis focuses on providing an initial step into how one might imagine 
the variables themselves in the system and their direct relationships with each other. 

 
Analogous Multivariational Reasoning Mental Actions 

Here I describe the potential mental actions of multivariational reasoning that might be 
analogous to relationship, increase/decrease, and amount from covariation. This “thought 
experiment” is intended to scaffold possible empirical methods aimed at examining the nature of 
multivariational reasoning, by imagining beforehand what cognitive activities might specifically 
be targeted in empirical research. 

First, what might be the mental actions in independent multivariational reasoning analogous 
to relationship, increase/decrease, and amount? The first mental action would likely consist of a 
realization that multiple input variables may impact a single output variable, and that each 
change may be happening in isolation or simultaneously. In thinking of the surface defined by 
the graph of z = f(x,y), it would be the realization that one can trace a path along this surface in 
any direction, freely. The next mental action may consist of coordinating each individual change 
in the input variables to an overall net directional change for the inputs. In the case of z = f(x,y), 
this would be congruent to imagining a “change vector,” ΔV, whose components are <Δx,Δy>, 
though I use the word “vector” for convenience and note that a student would likely not 
conceptualize it as an actual “vector.” In contrast to the second level of covariational reasoning, 
where there is already attention to whether the output increases or decreases, I hypothesize that 
this is a required preliminary mental action for independent multivariational reasoning, not yet 
involving “increase/decrease.” That is, it may be required to simply identify the direction of the 
change vector before determining whether the output increases or decreases along it. It would 
then be a separate mental action in which one would coordinate this change vector with whether 
the output variable increases or decreases. Thus, we can see additional sophistication in 
independent multivariation reasoning above what is required for two-variable covariational 
reasoning. Only after these three mental actions would a fourth mental action coordinate the 
amount of change in the output variable along the direction of this change vector. 

Next, consider dependent multivariational reasoning. Here, the first mental action would 
likely consist of the coordination of a change in one variable with simultaneous and 
interdependent changes in all other variables in the system. That is, it would be the realization 
that some variables cannot be held constant in a realistic way and that a system may only be 
understood by imagining all variables changing interdependently. The second mental action 
might then consist of coordinating the change in one variable with whether each of the other 
variables increases and/or decreases. This mental action is quite sophisticated, since one must 
coordinate interdependent increases and decreases, meaning it may even consist of separate 
mental actions. For example, in the balloon context, increasing temperature would mean an 
increase in pressure, but the fact that the volume also increases means that the pressure would 
not increase by as much as would be predicted if volume were able to be held constant. The next 
mental action would consist of coordinating the change in one variable with the amount by 
which each of the variables in the system interdependently change as a result. 



For nested multivariational reasoning, each mental action essentially deals with chained 
reasoning. The first mental action would involve coordinating a chain of changes from one 
variable to the next. It would be the realization that a change in one variable would have effects 
on a sequence of other variables. The second mental action may consist of coordinating the 
change in the first variable with whether the second variable increases or decreases, and 
coordinating whether increases or decreases in the second correspond with increases or decreases 
in the third, and so on. A possible metaphor is a sequence of gears where one attends to how a 
rotation in the first induces rotations on the others. Again, this may actually represent several 
separate mental actions. The next mental action would follow this same chain, but would 
coordinate how much each variable in the sequence increases or decreases. 

For vector multivariational reasoning, the first mental action may consist of coordinating 
changes among several input variables with changes among several output variables. It would be 
the realization that multiple input variables can impact multiple output variables, in isolation or 
simultaneously. The second mental action, like with independent multivariation, would likely not 
deal with whether the output variables are increasing or decreasing, but would consist of a 
preliminary mental action of coordinating the changes in the input variables to form an overall 
“input change vector,” ΔVin. This input change vector defines the direction along which the 
change is happening. I believe that it may then require several mental actions to achieve 
complete analogs to the increase/decrease and amount mental actions. The first of these would be 
to coordinate whether each output variable increases or decreases in the direction of the input 
change vector. The second would be to coordinate the amount of change in each of the output 
variables. The third would be to coordinate the changes in each of the output variables to create 
an overall “output change vector,” ΔVout. These may then culminate into a fourth mental action 
that directly coordinates the input change vector, ΔVin, with the output change vector, ΔVout. 

Lastly, I note that for independent and vector multivariation, it is possible to consider the 
direction of change first, such as imagining tracing along a curve, C (like in line and vector 
integrals). In this case, some of the mental actions may reverse, and rather than construct the 
input change vector from changes in the inputs, the mental actions might consist of decomposing 
the change vector into changes in the inputs. 

 
Conclusion 

In this paper I described conceptual analyses into different types of multivariation. I also 
described mental actions potentially associated with each type of multivariational reasoning and 
how they might be different from each other and from two-variable covariational reasoning. The 
usefulness of this report is in producing a conceptualization of multivariation that can provide the 
basis and framing for empirical studies into the nature of multivariational reasoning, such as 
ensuring that each hypothesized mental action is targeted during the study. I claim that the 
different types of multivariation described here are far more than theoretical curiosities. Students 
encounter, both in mathematics and in science, many contexts in which one of these types of 
multivariational reasoning might be needed. In fact, any context that involves more than two 
variables, which can even show up in pre-collegiate mathematics, may inherently require at least 
some of the more basic multivariational mental actions. As such, I believe this paper to be a 
useful step in understanding how reasoning about these contexts may be developed. 
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