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This paper discusses a student coordinating changes in covarying quantities. We adapt Piaget’s 
constructs of figurative and operative thought to describe her partitioning activity in terms of the 
extent that it is constrained to carrying out particular sensorimotor actions on perceptually 
available material, and we relate such descriptions to her thinking about quantitative amounts of 
change. We conclude the paper by discussing how characterizing these nuances of student 
thinking in terms of figurative and operative thought contributes to current literature on 
covariational reasoning and conceptualization of concept construction.  
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Researchers have shown that students’ quantitative and covariational reasoning—the mental 
actions involved in conceiving measurable attributes changing in tandem (Carlson, Jacobs, Coe, 
& Hsu, 2002; Thompson, 2011)—are critical for their learning of function and rate of change 
(Ellis, 2011; Johnson, 2015; Thompson & Carlson, 2017). Stemming from the complexities of 
students’ thinking, these researchers have called for investigations that identify nuances in 
students’ covariational reasoning. We answer these researchers’ calls by drawing on Carlson et al. 
(2002) and Saldanha and Thompson’s (1998) notions of covariation to characterize a student’s 
reasoning about amounts of change in various contexts. We extend extant literature using 
Piaget’s (2001) notions of figurative and operative thought to explain the extent a student’s 
reasoning was constrained to sensorimotor actions and perceptual results from those actions. 

Quantitative Reasoning, Covariational Reasoning, and Partitioning Activity 
Thompson (2011) described that the mental construction of a quantity involves 

“conceptualizing an object and an attribute of it so that the attribute has a unit of measure” (p. 
37). Despite Thompson’s use of “measure,” he emphasized that reasoning about a specified 
quantity’s value is unnecessary when reasoning quantitatively; sophisticated conceptions of 
quantity entail reasoning about a quantity’s magnitude (i.e., amount-ness) while anticipating that 
it has an infinite number of measure-unit pairs (Thompson, Carlson, Byerley, & Hatfield, 2014). 
Such distinction between a quantity’s magnitude and its measures enables us to account for 
reasoning about covarying quantities that is not constrained to the availability of values; focusing 
on a quantity’s magnitude affords characterizing mental activity in terms of perceptual material 
associated with a quantity’s amount-ness (e.g., a segment that represents a quantity of distance).    

An individual imagining variations in a quantity’s magnitude (and hence value) is positioned 
to reason covariationally. When reasoning covariationlly, “a person holds in mind a sustained 
image of two quantities’ values (or magnitudes) simultaneously…one tracks either quantity’s 
value with the immediate, explicit, and persistent realization that, at every moment, the other 
quantity also has a value” (Saldanha & Thompson, 1998, p. 299). Building on Saldanha and 
Thompson’s (1998) covariation, Carlson et al. (2002) specified mental actions involved in 
coordinating quantities, among which students’ coordination of amounts of change of one 
quantity with respect to changes in another (Mental Action 3 in their framework) is central to our 
work here. An individual coordinating amounts of change imagines quantities’ magnitudes 
accumulating in successive states (and possibly anticipates continuous covariation between these 



states; see Thompson and Carlson (2017)). To illustrate, a student reasoning about covarying 
quantities B and K can envision the magnitude ||B|| accumulating in equal accruals, construct the 
accumulation of ||K|| in terms of corresponding accruals, and coordinate those accruals in ||K|| to 
conceive ||K|| increasing by decreasing amounts with respect to ||B|| (see Figure 1a-c for an 
illustration with respect to the Taking a Ride task in Figure 3a). Because coordinating amounts of 
change involves the activity of constructing a magnitude’s accumulation in terms of accruals, we 
use partitioning activity to refer to students’ mental and sensorimotor actions associated with 
their producing and reasoning about these increments that may represent amounts of change.  

 
Figure 1. As quantity B increases by equal amounts (denoted in pink), quantity K increases (denoted in dark blue, 

(a)) by decreasing amounts (denoted in light blue, (b)), which can be represented in a Cartesian system (c). 

Figurative and Operative Thought 
Table 1. Figurative and Operative Partitioning Activity 
Partitioning Activity Foregrounded Actions of Partitioning Activity 

Figurative 
Partitioning Activity 

Repeating sensorimotor actions of partitioning tied to particular 
perceptual material and results; Potentially constrained to available 
perceptual material; Conceived invariance is with respect to 
sensorimotor actions and their perceptual results 

Operative Partitioning 
Activity 

Sensorimotor actions subordinate to mental actions (e.g., quantitative 
and covariational reasoning); Can anticipate partitioning activity on 
available or hypothetical perceptual material; Conceived invariance is 
with respect to coordinated mental actions and their transformations 

We have found the theoretical distinction between figurative and operative thought (Piaget, 
1976, 2001; Steffe, 1991; Thompson, 1985) useful in developing models of students’ partitioning 
activity. Piaget (1976, 2001) characterized figurative thought as based in and constrained to 
sensorimotor actions and perception, and he described operative thought as the coordination of 
mental operations so that these coordinations dominate figurative material (i.e. sensorimotor 
actions and perceptual material). We emphasize that characterizing a student’s thinking as 
operative does not imply her thinking does not entail fragments of figurative material. Likewise, 
characterizing a student’s thinking as figurative does not imply that her thinking does not entail 
operative schemes. A researcher’s sensitivity to these distinctions is an issue of “figure to 
ground” (Thompson, 1985, p. 195). When a student’s thinking foregrounds carrying out 
repeatable (mental or sensorimotor) actions and the results of those actions, it is figurative; when 
a student’s thinking foregrounds the coordination of actions and transformations of those actions 
and their results, it is operative. The issue of foregrounding is important for describing students’ 
partitioning activity because such activity necessarily entails figurative material (e.g., drawing 
and producing graphs and partitions) and likely entails operative schemes (e.g., understanding a 
coordinate systems in terms of directed distances). In characterizing students’ partitioning 
activity in terms of figurative or operative thought, we thus make the distinctions in Table 1.  



To illustrate these distinctions, consider a student determining if the graphs in Figure 2a and 
Figure 2b represent the linear relationship y = 3x. With respect to Figure 2a, a student who 
engages in figurative partitioning activity could imagine the graph in terms of the successive 
movements of one axes mark to the right (denoted in blue) and then three axes marks up 
(denoted in red), and associate such movements with a positive slope (Paoletti, Stevens, & 
Moore, 2017). With respect to Figure 2b, the student could conceive movements to the right 
(denoted in blue) along the graph as corresponding to movements down the graph (denoted in 
red), and associate such movements with a negative slope. In each case, the student’s thought is 
dominated by carrying out or repeating particular sensorimotor actions to the extent that 
associations (e.g., a line falling left-to-right necessarily has a negative slope) are tied to that 
activity and its results. Hence, the student concludes that the two graphs are different.  

 
Figure 2. (a) A graph that represents the relationship of y=3x in a Cartesian coordinate system, (b) a rotated graph 

of (a), and (c) a graph that represents the relationship of r=3θ in a polar coordinate system. 

In comparison, a student who engages in operative partitioning activity could conceive that 
both graphs are such that any directed change in x corresponds to a directed change in y three 
times as large as that in x. The student’s partitioning activity is operative because she can 
coordinate and transform activity specific to each graph to conceive an underlying invariance 
that dominates figurative differences in activity. The student might anticipate re-presenting 
invariant partitioning activity in other contexts or coordinate systems (e.g., polar coordinates, 
Figure 2c). The anticipation of re-presenting partitioning activity aligns with Moore and 
Silverman’s (2015) abstracted quantitative structure: a structure of related quantities a student 
has internalized as if it is independent of specific figurative material (i.e., representation free).  

Methods 
This paper reports results of a semester-long teaching experiment (Steffe & Thompson, 

2000) with prospective secondary mathematics teachers (PSTs; Lydia, Emma, and Brian). They 
were in their first semester of a four-semester secondary mathematics education program at a 
large university in the southeast United States. We conducted 10-11 teaching sessions (1 to 2 
hours each) with each PST. The project principal investigator (the second author) served as the 
teacher-researcher (TR) at every teaching session. At least one other research team member was 
present as the observer(s). Each session was videotaped and digitized for analysis. In both 
ongoing and retrospective analyses efforts, we conducted conceptual analysis (Thompson, 2008) 
to develop models of PSTs’ mathematics. Specifically, our iterative analyses efforts involved 
constructing hypothetical mental actions that viably explained the PSTs’ observable and audible 
behaviors. We continually searched the data for instances that the models could not account for, 
and we modified our models or we attempted to explain developmental shifts in a PST’s 
meanings. In this paper, we focus on the case of Lydia because of particular aspects of her 
partitioning activity that were consistent throughout the teaching experiment. We consider it 
important to characterize her ways of thinking in order to add nuances to our prior 
conceptualizations of students’ quantitative and covariational reasoning.  



Task Design  
We describe Lydia’s activity on three related tasks: (1) Taking a Ride, (2) Which One, and 

(3) Circle. Taking a Ride included an animation of a Ferris wheel (Desmos, 2016) (see Figure 
3a) and focused the students on constructing the covariational relationship between the height of 
the green rider above the horizontal diameter of the wheel and its arc length traveled (the sine 
relationship; Moore (2014)). Which One (Figure 3b) was presented after students’ first encounter 
of Taking a Ride. It included a simplified version of a Ferris wheel (left) with the position of a 
rider indicated by a dynamic point. The topmost line segment (shown in blue, right) represented 
the arc length the rider had traveled counterclockwise from the three o’clock position. Students 
could vary the segment length by dragging its endpoint with the dynamic point on the circle 
moving correspondingly. We asked the student to determine which of the six red segments, if 
any, could accurately represent the rider’s height above the horizontal diameter as the rider’s arc 
length varied. Segment 1 is a normative solution and segments 2-6 vary with either different 
directions or rates. In students’ initial attempt on these two tasks, we did not prompt them to 
graph because we wanted to gain insights into their reasoning with displayed magnitudes in 
contexts that minimized the influence of their previously constructed graphing meanings. For 
Circle (Figure 3c), we asked students to graph the relationship between the horizontal distance 
and the arc length associated with a dynamic point (i.e., the cosine relationship). Collectively, 
we designed the series of tasks to provide different figurative material to tease apart the extent 
that a student’s reasoning was dominated by figurative or operative thought. 

 
Figure 3. (a) Snapshots of Taking a Ride, (b) Which One (with segment numbers labeled), and (c) Circle. 

Results 
In this section, we illustrate Lydia’s partitioning activity with a focus on the figurative 

material constituting her partitioning activity as she considered a variety of representations.  

Re-presenting Partitioning Activity 
In the first teaching session, we worked with Lydia on Taking a Ride (Figure 3a). With much 

effort, Lydia constructed what we perceive to be successive amounts of change of height for 
successive, equal changes in arc length (see her construction in Figure 4a-c). Noticing that the 
blue segments (in Figure 4c) decreased in magnitude, Lydia concluded that, “[A]s the arc length 
is increasing... [the] vertical distance from the center is increasing ... but the value that we’re 
increasing by is decreasing.” Suggesting she was excited that she had identified this relationship, 
she explained with enthusiasm, “I just discovered this by myself.” This revealed that her activity 
of drawing partitions and identifying amounts of change was novel to her at the time.  



 
Figure 4. Lydia (a) partitioned the distance traveled in equal increments, (b) identified height of the green rider 

in each successive state, and (c) identified amounts of change of height. 
 
Immediately following this task, we presented the Which One task (Figure 3b). After some 

explorations, Lydia claimed that she would like to choose a red segment that is moving at a 
constant rate. She eliminated four of the six segments and had hard time deciding which of the 
other two segments was moving constantly (Figure 5a). She then decided to orient one of them (a 
normatively correct solution) vertically, and put it inside the circle (Figure 5b). She then 
confirmed that the length of that segment matched the height of the dynamic point for different 
states (Figure 5c). When asked if the segment entailed the amounts of change relationship 
constructed in the initial Taking a Ride task, she responded: 

Lydia: Not really…Um, I don't know. [laughs] Because that was just like something that I 
had seen for the first time, so I don't know if that will like show in every other 
case…Well, for a theory to hold true, it like – it needs to be true in other occasions, um, 
unless defined to one occasion.  

TR: So is what we're looking at right now different than what we were looking at with the 
Ferris wheel?  

Lydia: No. It's – No…Because I saw what I saw, and I saw that difference in the Ferris 
wheel, but I don't see it here, and so –  

TR: And by you don't see it here, you mean you don't see it in that red segment?  
Lydia: Yes.  

 
Figure 5. (a) Lydia was working on the Which One task, (b) checking the red segment point-wisely, and (c) we 

were assisting Lydia to identify amounts of change in height. 
 
Lydia described height increasing by decreasing amounts as a “theory” that needed to be 

tested in this new situation. Her knowing that the red segment worked for each state did not 
imply by necessity that the red and blue segments existed in a covariational relationship 
consistent with that between height and arc in Taking a Ride. Following this exchange, and after 
the researchers created perceptually available material by using pens to denote amounts of 
change of the red segment (Figure 5d), Lydia responded in surprise that her “theory” held true.  

We characterize Lydia’s partitioning activity as figurative due to her difficulty re-presenting 
such activity from one context to another. She identified successive height accruals on the Ferris 
wheel (Figure 4c), but her understandings of amounts of change were rooted in carrying out 
activity and creating perceptually available increments in that context. When moved to a context 



with magnitudes changing continuously, she did not anticipate or re-present her partitioning 
activity. That is, as she considered successive red segment states in Which One, she was unable 
to hold in mind the red segment associated with a prior state to compare it to a current state.  

Situations, Graphs, and Figurative Material 
The TR began the fourth session by asking Lydia what she recalled from the previous 

sessions, in which she worked on Taking a Ride (Figure 3a) and Circle tasks (Figure 3c). She 
started with drawing the first quarter of a circle (see Figure 6a for work): 

“So we kind of said as the arc length is increasing in the first quadrant that our X distance 
is decreasing [drawing the horizontal segments within the circle from bottom to top in 
Figure 6a], and then…distance will decrease more in the same amount of space. So like 
from here to here [highlighting the bottom blue arc], then we'll say these are the same arc 
length [highlighting the top blue arc]…so we're going to take this point here [marking a 
point at the top of the far-right pink segment] and then drag it down [drawing the far-
right pink segment], we've only lost this much [highlighting the shorter red segment]. 
And then from here [drawing the middle pink segment] to here [tracing the far-left pink 
segment] we lost this distance [highlighting the longer red segment], but we're saying 
those are the same arc length [pointing to the two blue arcs], so it's a lot more distance.” 

 
Figure 6. (a) Lydia’s drawing of the circle situation, (b) Lydia’s graph, and (c)-(e) her construction process. 

 
Lydia’s partitioning activity appeared compatible with that from previous sessions, and thus 

the TR asked Lydia how such activity related to graphing the relevant relationship. Lydia drew a 
graph (Figure 6b) and explained how the graph related to her partitioning activity in Figure 6a: 

“As we go up in arc length [highlighting the blue curve in Figure 6c]…that distance is 
decreasing [drawing the horizontal segments  from bottom to top in Figure 6c], and so we see 
that here [drawing the pink segment in Figure 6d] is like this [highlighting the red segment in 
Figure 6d], and then [highlighting the blue curve and drawing the pink segments in Figure 
6e] ... here is this [drawing the red segment in Figure 6e]. So that's the same conclusion we 
had gotten from the circle, so then we can say that this circle relates to this graph.” 
Lydia’s partitioning activity across the situation and graph included: (a) drawing horizontal 

segments emanating from the circle and curve (see Figure 4a and 4c), (b) tracing arcs from lower 
end points to higher end points on the circle (denoted in blue, see Figure 6a) and tracing a curve 
on graph in the same manner (denoted in blue, see Figure 6c and 6e), (c) drawing vertical 
segments from the end points produced by the arcs and curve to a horizontal segment or line 
(denoted in pink, see Figure 6a, 6d and 6e), and (d) drawing horizontal segments between two 
pink segments and comparing their lengths (denoted in red, see Figure 6a, 6d, and 6e). We 
characterize Lydia’s partitioning activity as figurative due to it foregrounding repeated 
sensorimotor actions that produce similar perceptual results (e.g., partitioning along something 
curved, drawing vertical segments, and drawing and comparing horizontal segments).  

Providing additional evidence that Lydia’s partitioning activity was figurative, later in the 
teaching session, Lydia drew a similar graph (Figure 7a) in order to discuss the relationship 



between “height” and “arc length”. Her activity included tracing from left to right two equal 
horizontal segments (denoted in red, Figure 7a), drawing vertical segments from end points of 
the vertical segments to the curve of her graph (denoted in pink, Figure 7a), and tracing two 
corresponding curves on her graph (denoted in blue, Figure 7a). She compared the lengths of 
these curves and concluded that the increases in height became smaller. Similarly, on a circle, 
she traced two horizontal segments (denoted in red, Figure 7b), drew vertical segments (denoted 
in pink, Figure 7b), and traced and compared two arcs on the circle (denoted with blue, Figure 
7b). Again, Lydia’s figurative partitioning activity involved her carrying out same sequence of 
sensorimotor actions on her graph and circle, the elements of which entailed similar perceptual 
results (e.g., the sequence of drawing horizontal and vertical segments, and curves).  

 
Figure 7. (a) Lydia’s new with drawn partitions, and (b) Lydia’s circle with drawn partitions. 

Discussion 
Characterizing a student’s thinking of amounts of change in terms of figurative or operative 

partitioning activity is significant in that it allows us to describe nuances in Carlson et al. 
(2002)’s covariation framework and, more generally, mental actions involved in quantitative 
reasoning (Thompson, 2011). A student’s amounts of change understandings can differ in the 
extent that her partitioning activity is restricted to particular sensorimotor actions and the 
perceptual results of these actions. In this paper, we illustrated that a particular student’s 
partitioning activity was figurative because it involved her seeking to repeat sensorimotor actions 
in a particular order across various situations. Furthermore, her partitioning activity was 
constrained to having perceptually available material. Consequently, when confronted with a 
novel situation in which these figurative elements were absent or carrying out the sensorimotor 
actions failed (e.g., Which One), she had difficulty re-presenting partitioning activity.   

von Glaserseld (1982) defined concept as “any structure that has been abstracted from the 
process of experiential construction as recurrently usable…must be stable enough to be re-
presented in the absence of perceptual “input” (p. 194). Characterizing partitioning activity as we 
have enables us to extend and apply this definition in the context of students’ reasoning about 
relationships between covarying quantities. When a student abstracts her partitioning activity so 
that it is not tied to particular figurative material, thus mentally anticipating transformations of 
such (e.g., changing orientations or representations), she has constructed a concept related to this 
relationship (e.g., the concept of sine or rate of change). As Lydia’s activity indicates, it is 
important for researchers to consider students’ activities among a variety of contexts before 
making claims about their covariational reasoning and meanings. Moving forward, we call for 
continued explorations into how students reflect upon their partitioning activity and abstract 
quantitative relationships and structures (e.g., rate of change).  
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