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The purpose of this collective case study is to examine mathematical knowledge for teaching 
examples in precalculus. The instructors involved in the study were experienced graduate 
teaching assistants who were teaching their course for the third time and were identified as good 
teachers. Utilizing a social constructivist and cognitive theory approach, I analyzed video 
recordings of enacted examples. The central question that guided this analysis was: What is the 
mathematical knowledge for teaching examples in precalculus? The goal of this study is to 
examine undergraduate mathematical knowledge for teaching from the perspective of practice, 
instead of relying on existing frameworks. As a result of this study, the author developed a model 
of mathematical knowledge for teaching examples in precalculus that includes knowledge of 
representations, students, instruction, specialized content, and connections when enacting high 
cognitive demand examples. 
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Introduction 
Mathematical knowledge for teaching (MKT) has been defined as the “mathematical 

knowledge needed to perform the recurrent tasks of teaching mathematics to students” (Ball, 
Thames, & Phelps, 2008, p. 395). While MKT has been studied extensively at the elementary 
level (Ball et al., 2008; Carpenter & Fennema, 1991; Heather Hill, Sleep, Lewis, & Ball, 2007; 
Ma, 2010) and at the secondary level (Krauss, Baumert, & Blum, 2008; McCrory, Floden, 
Ferrini-Mundy, Reckase, & Senk, 2012; Rowland, Huckstep, & Thwaites, 2005), research on 
MKT at the undergraduate level is still a growing field (Speer, Smith, & Horvath, 2010). The 
goal of this study is to contribute to that field by building upon the link between MKT and 
cognitive demand (Charalambous, 2010) in order to study mathematical knowledge for teaching 
examples in precalculus from the perspective of practice. 

Problem 
Often, it is assumed that earning a degree in mathematics is what initially qualifies ones to 

teach at the undergraduate level. Historically, undergraduate instructors learned to teach by 
following the role model of mentors. However, Bass (1997) points out that there is much that 
cannot be learned through observations alone. To address lack of teaching preparation, many 
doctoral programs today offer teaching professional development (PD) for graduate teaching 
assistants, who will make up the future workforce of undergraduate instructors (Bressoud, Mesa, 
& Rasmussen, 2015; Ellis, 2014). While offering some teaching PD is better than none, the 
content of what is being taught is an important aspect to consider. 

Of course, pedagogical knowledge is a component of teaching and should be included in 
GTA PD. However, studies have shown that despite their formal mathematical education, GTAs 
still lack mathematical knowledge that is needed for effective teaching (Kung & Speer, 2009; 
Speer & Hald, 2008). In these studies, the authors rely on existing frameworks for MKT that 
where developed at the K-12 level. While it is reasonable to assume that K-12 and undergraduate 
MKT are similar, Speer points out that there are important differences between K-12 and 



undergraduate teachers that need to be attended to (Speer, King, & Howell, 2014). Therefore, the 
goal of this study is to examine MKT at the undergraduate level from the perspective of practice, 
instead of relying on existing frameworks. 

Significance 
As previously stated, there is little research on MKT at the undergraduate level. But why is it 

important to study MKT to start with? First, studies have found that pure content knowledge is 
not a predictor of teaching quality and student achievement (Begle, 1972; Greenwald, Hedges, & 
Laine, 1996; Hanushek, 1981, 1996). However, studies at the K-12 level have shown that MKT is 
a predictor of teaching quality and student achievement (Hill et al., 2008; Hill et al., 2007; 
Krauss et al., 2008). This knowledge is not usually taught in content courses, hence why many 
GTAs seem to be lacking MKT. While no measures of MKT at the undergraduate level exist, it 
is reasonable to assume that this positive relationship still exists at the undergraduate level. 
Therefore, if we can identify what MKT at the undergraduate level looks like and integrate it into 
GTA PD programs, we can have a positive impact on undergraduate education. 

The other question that is reasonable to ask is why focus on precalculus? As the number of 
students needing to take introductory math courses for their degree increases, the teaching 
burden of math departments increases (Ellis, 2014). Approximately 1,000,000 college students 
take introductory level math courses each year (Gordon, 2008). Of these, approximately 85-90% 
are non-STEM intending (Rasmussen, Ellis, Lindmeier, & Heinze, 2013) and success rates are 
typically around 50% (Gordon, 2008). Even for STEM-intending students, studies have found 
that difficulty passing introductory-level courses is contributing to the “leaking pipeline” of 
students leaving STEM (Thompson et al., 2007). Therefore the instructional quality of 
precalculus has a large impact on undergraduate students.  

Background 
While research on MKT at the undergraduate level is sparse, there does exist a large body of 

research on K-12 MKT. While my goal is to examine MKT at the undergraduate level from the 
perspective of practice instead of using existing frameworks of MKT that were developed at the 
K-12 level, the two are bound to be closely related. In an effort to situate my study within the 
existing field of research on MKT and avoid the assumption that I am attempting to study MKT 
at the undergraduate level in an epistemological vacuum, I will first present a broad overview of 
existing research on MKT. Also, I chose to study MKT by building upon its relationship with the 
cognitive demand of tasks. This decision was motivated by Charalambous’ (2010) exploratory 
study, which found that MKT and the cognitive demand of enacted tasks are positively related.  

Mathematical knowledge for teaching. Following the studies that showed that subject 
matter knowledge was not a predictor of teaching quality and student outcomes, Lee Shulman 
(1986; 1987) proposed that researchers begin studying pedagogical content knowledge. Shulman 
defined pedagogical content as going “beyond knowledge of subject matter per se to the 
dimension of subject matter knowledge for teaching” (1986, p. 9). Shulman situated pedagogical 
content knowledge in contrast to subject matter knowledge, which is “the knowledge, 
understanding, skill, and disposition” of a subject matter (1987, p. 8). Since then, math education 
researchers have begun looking into professional knowledge for teaching mathematics. Hill, 
Rowan, and Ball (2005) found that elementary teacher’s MKT was a significant predictor of 
student gains. Similarly, Baumert et al. (2010) showed that secondary teachers’ MKT was a 
predictor of student outcomes. In both of these examples, the mathematical knowledge that is 
specific to the work of teaching is not usually taught in general undergraduate mathematics 



courses. Therefore, using the number of math courses taken beyond calculus is not the same as 
measuring content knowledge for teaching. 

Speer, Smith, and Horvath (2010) conducted a literature review to search for empirical 
research on the practices of collegiate teachers of mathematics. As a result, the authors identified 
only five articles, indicating that “collegiate teaching practice remains a largely unexamined 
topic in mathematics education” (p. 100). Since then, more studies have been published 
specifically on MKT at the undergraduate level (Bargiband, Bell, & Berezovski, 2016; 
Callingham et al., 2012; Castro Superfine & Li, 2014; Firouzian & Speer, 2015; Hauk, Toney, 
Jackson, Nair, & Tsay, 2013; Jaworski, Mali, & Petropoulou, 2017; Musgrave & Carlson, 2017; 
Rogers & Steele, 2016; Rogers, 2012; Speer & Wagner, 2009; Vincent & Sealey, 2015). 
However, some of these studies utilize existing frameworks for MKT that were developed at the 
K-12 level, which can be problematic (Speer et al., 2014). Therefore, the purpose of this study is 
to contribute to this growing body of research by examining MKT at the undergraduate level 
from the perspective of practice. 

Cognitive demand and task unfolding. Smith and Stein (1998) define lower-level demand 
tasks as “tasks that ask students to perform a memorized procedure in a routine manner” and 
higher-level demand tasks as “tasks that require students to think conceptually and that stimulate 
students to make connections” (p. 269). Stein, Remillard, and Smith (2007) also created a 
framework to describe the temporal process of task unfolding and factors that contribute to this 
transformation. In this process, teachers utilize a written task to formulate their intended task, 
which in turn influences the enacted task. Each phase in this process is motivated by the goal of 
producing student learning and is influenced by factors, such as teacher’s beliefs and knowledge. 
In 2010, Charalambous found that there was a connection between elementary teachers’ MKT 
and their ability to enact tasks at a high level of cognitive demand. It is this relationship between 
MKT and cognitive demand that I plan to build upon in this study. 

Purpose and Research Question 
The purpose of this collective case study is to examine mathematical knowledge for teaching 

examples in precalculus. I will do this by first examining cognitive demand in order to identify 
examples that were enacted at a high level of cognitive demand. Building upon Charalambous’ 
(2010) results, I believe that these examples will provide me with fertile ground for examining 
MKT. While I believe that MKT influences every stage in the process of task unfolding, this 
report will focus on the final stage of task unfolding. The central question that guides this study 
is: What is the mathematical knowledge for teaching examples in precalculus? To narrow the 
focus of this study, I will primarily attend to answering the following two subquestions: 

1. What mathematical knowledge enables instructors to enact examples at a high level of 
cognitive demand? 

2. How can we characterize this knowledge? 

Methodology 

Theoretical Framework 
In order to study teacher knowledge, I will utilize a social constructivist lens as well as 

cognitive theory of the teaching process. A social constructivist lens assumes that “multiple 
realities are constructed through our lived experiences and interactions with others” (Creswell, 
2013, p. 36). Social constructivist researchers believe that reality is shaped by individual 
experiences, utilize an inductive method of emergent coding, and often collect observational 



data. Schoenfeld’s (1998, 1999) cognitive theory of the teaching process attends to teacher 
knowledge (as well as goals and beliefs) and how it influences decision-making. The reason why 
I chose this framework is because it attends to the reasons why a teacher makes certain 
instructional decisions and what knowledge enables them to do this. Also, it complements Stein 
et al.’s (2007) task unfolding framework in many ways. 

Setting and Participants 
For the purposes of this study, precalculus courses are defined to include the College 

Algebra, Trigonometry, and combined College Algebra + Trigonometry courses. The 
participants from this study were all instructors at the same large public university in the 
Midwest. At the university involved in the study, second-year graduate students make up the 
majority of the instructors for precalculus. Since second-year graduate students are teaching their 
own class for the first time, I chose to exclude them from my data set and instead only recruited 
participants who were teaching a precalculus course for at least the third time. The participants in 
this study included one Trigonometry instructor (Greg) and three College Algebra + 
Trigonometry instructors (Alex, Emma, and Kelly). All of them were graduate students in their 
third, fourth, or fifth year who had already earned their M.S. and were working towards their 
Ph.D. in mathematics. While they all were teaching their prospective course for the third time, 
they had 2.75 years of collegiate teaching experience on average. Also, all of the participants in 
this data set were recruited because their department had identified them as good teachers. 

Design and Procedures 
In order to answer my research questions, I am utilizing a collective case study design (Stake, 

1995). In order to examine MKT more generally, I included multiple instructors and collected 
data on multiple examples. Since I have included a limited number of participants, there is little 
is known about mathematical knowledge for teaching precalculus, and I seek to propose new 
theoretical insight into MKT, I chose to utilize an exploratory case study (Yin, 2014). The unit of 
analysis I am focusing on is the examples enacted by precalculus instructors. Studying teaching 
from the perspective of practice can be difficult, so I utilized the frameworks of cognitive 
demand and task unfolding to help make the knowledge the teachers were using more visible. 
Building upon Charalambous’ (2010) finding that MKT and cognitive demand are positively 
related, I utilized cognitive demand as a way to identify examples that would provide me with 
rich opportunities to examine MKT. Second, studying teaching through the task unfolding 
framework (Stein et al., 2007) allowed me to see the instructors’ decision-making and examine 
how their mathematical knowledge enabled them to enacting examples. 

Coding proceeded in two stages that concentrated on cognitive demand and then knowledge. 
In the first stage, I utilize the Task Analysis Guide (Smith & Stein, 1998) to code the cognitive 
demand of enacted example. Examples that were coded as enacted at a high level of cognitive 
demand were then analyzed in the second stage, which has two cycles. In the first cycle, I 
utilized inductive descriptive coding (Miles, Huberman, & Saldaña, 2014) to identify 
mathematical knowledge that enabled the instructors to enact the example at a high level of 
cognitive demand. This round of coding would help me to answer my first research question. To 
answer my second research question, I conducted a second cycle of pattern coding in order to 
identify emergent themes and relationships between the codes that resulted from the first cycle. 
A detailed description of this methodology can be found in Author (2017). 



Results 

Task Unfolding by Cognitive Demand 
I will report the results from the first stage of analysis in brief, since the second stage of 

analysis primarily answers the research questions. In total, there were 39 examples included in 
the full data set. Of those, 13 examples were either included in the written lesson guide but not 
used by the instructor or included in their lesson plan but not enacted during class time. While 
these examples still involved the teacher utilizing their mathematical knowledge to make 
instructional decisions, this paper focuses on enacted examples, so they will not be discussed. Of 
the remaining 26 examples, 14 of them were enacted at a high level of cognitive demand. It is 
also important to note that all 14 of these examples were coded as procedures with connections 
tasks (Smith & Stein, 1998). 

Mathematical Knowledge for Teaching 
In the second stage of coding, four main domains of knowledge emerged: representations, 

students, instruction, and specialized content. In addition, knowledge of connections between 
and within these domains was also a prominent domain of knowledge that emerged. For each of 
these domains, I will describe some of the related sub-codes and give examples of the 
mathematical knowledge that the instructors used in relation to these categories. 

Representations. Since procedures with connections tasks are “usually represented in 
multiple ways” (Smith & Stein, 1998, p. 348), it is not surprising that representations emerged as 
a main domain of knowledge. Several instructors depended on knowledge of representations that 
reflected student thinking. For example, Alex introduced exponentials by having students 
compare simple and compound interest. After letting her students work on the problem for a 
while, she noticed that many students were working calculating compound interest recursively, 
so she drew a table that organized their calculations by year. Emma, on the other hand, 
recognized that her students were struggling to connect verbal descriptions of function 
transformations to their final graphical representations, so she drew the associated graph for each 
individual transformation. In teaching her students about the long-term behavior of polynomials, 
Kelly utilized knowledge of accessible representations that still capture complexities (e.g., 
𝑦 = 𝑥, 𝑥!, 𝑥!) in order to strip away unnecessary distractions and help her students focus on the 
important features. 

Students. Instructors relied upon their knowledge of students in varying ways. Greg used 
knowledge of common student struggles and removed the goal statement from the written lesson 
guide in order to force his students to make connections between the problem and the content 
they had previously learned. Both Alex and Kelly applied their knowledge of students’ abilities 
and designed their examples around tasks that students would struggle with, but were within 
reach. This also required the instructors to have knowledge of student understanding. Instructors 
also utilized knowledge of appropriate questions to ask, knowledge of how to probe student 
thinking, knowledge of how to interpret student thinking, and knowledge of how to respond to 
student thinking as they collaboratively worked through examples with the input of students. 
Emma also had to interpret and respond to student thinking, although she did so in the context of 
reviewing student quizzes and selecting an example that addressed a common mistake many 
students made. Another general sub-code that was categorized as knowledge of students was 
providing explanations to students. 

Instruction. The two most common sub-codes that fell under the domain of knowledge 
instruction were knowledge of instructional sequences and knowledge of problem scaffoldings. 



To help her students construct an exponential equation, Alex sequenced instruction so that 
students worked informally with concepts before they were formally defined, utilized familiar 
problems to reintroduce ideas, and provided motivation for topics. She also scaffolded their 
inquiry by introducing a table. Emma scaffolded problems by building connections between 
algebraic and graphical representations and sequenced instruction by first utilizing familiar, but 
inefficient, methods before introducing new, but more efficient, methods. Also, Greg utilized 
knowledge of how to guide instruction towards the mathematical point by choosing to not pursue 
a student suggested idea that might detract from the main goal of the example. 

Specialized Content. While knowledge of course content influences all of the domains, 
some sub-codes related primarily to specialized content knowledge that goes beyond the content 
covered in the course. For example, instructors had to rely on their specialized knowledge of 
reasonable and appropriate examples. While some of this was planned, other times it was 
something that instructors had to do on the spot. For example, Alex initially introduced function 
compositions generally. However, she decided to make the example more concrete and 
constructed functions that were reasonable and appropriate. In order to come up with accessible 
representations that still captured complexities, Kelly drew upon her knowledge of critical and 
non-critical features of functions and their long-term behavior. In explaining why a certain 
answer was incorrect, Emma utilized knowledge of how errors impact the final solution. While 
these may all be examples of content knowledge that the instructors would like their students to 
develop, they were not part of the intended learning outcomes for the course and therefore make 
up specialized content knowledge that the instructors drew upon when teaching. 

Connections. Given that all of the examples were coded as procedures with connections 
tasks, connections emerged as another main domain of knowledge. However, this domain is 
different from the others in that it is not independent, but rather captures knowledge of 
relationships between and within the other four domains. Instructors relied upon their knowledge 
of connections in a variety of ways. For example, Kelly drew upon her knowledge of related 
topics in order to illustrate how the multiplicity of zeros relates to the behavior of a polynomial 
function at its zeros. In order to help students understand the purpose of an example or a single 
step, Alex and Emma relied on their knowledge of connections between mathematical 
computations and problem-solving goals. In many cases, instructors combined their knowledge 
of connections and their pedagogical skills in order to build knowledge of how to help students 
make connections. 

Discussion 
In analyzing the data, I found that knowledge of representations, students, instruction, 

specialized content, and connections enable instructors to enact examples at a high level of 
cognitive demand. Since knowledge of connections is really knowledge of how the other 
domains are connected, I represented this model as a pyramid (Figure 1) with specialized content 
as the base and connections as the edges. In addition to making connections to different domains, 
knowledge of connections can also be used within a single domain. Finally, knowledge of 
students, instruction, representations, and connections are all situated within and build upon 
knowledge of course content, but I chose to not focus on this type of knowledge in my model. 

Conclusions 
Given that examples are an important part of teaching, this model can be used in designing 

teaching PD opportunities for GTAs. In particular, PD should be designed to help GTAs develop 
knowledge of representations, students, instruction, specialized content, and connections. This 



model benefits the community of math education by providing a decomposition of the 
knowledge used by instructors when teaching examples in precalculus. While it is similar to 
other models of MKT, it is also different in several important ways. First, the domains of 
knowledge are inherently connected. Second, while knowledge of representations and 
connections are implicit in many of the other models, they are not explicitly emphasized. 

 
Figure 1 Proposed model for mathematical knowledge for teaching examples in precalculus. 

Limitations 
First, as noted previously, the five domains of knowledge are not assumed to be independent. 

From a quantitative standpoint, this is a limitation of the model, but I believe it accurately 
reflects the interconnected nature of teaching. Second, since all of the high cognitive demand 
examples were coded as procedures with connections tasks, this model may overemphasize 
knowledge of connections and representations. However, “doing mathematics” may not be well 
suited for examples and it may be reasonable to assume that most high cognitive demand 
examples are procedures with connections tasks. Also, since this study was a collective case 
study and all of the instructors were graduate students, it may not be generalizable.  

Future Research 
There is still much work that needs to be done to understand MKT at the undergraduate level, 

but this study provides a starting point for future investigations. In particular, it would be 
interesting to extend this study in several different directions. First, expanding the sample size 
and including instructors with a variety of backgrounds and teaching experience would test 
whether or not the model could be generalizable. Second, observing enacted examples that are 
“doing mathematics” tasks (Smith & Stein, 1998) would help further refine the model and test 
whether or not “procedures with connections” tasks had a large influence on the knowledge 
domains that emerged. Third, in order to understand post to better understand MKT at the 
undergraduate level at large, it would be beneficial to collect classroom data that focuses on 
more than just examples. Finally, my intention is to dig into the entire process of task unfolding 
and see what knowledge instructors use in the planning stage and utilize pre- and post-
observation interview data to dig further into the knowledge used by instructors when teaching 
precalculus. 

Acknowledgements. My deepest gratitude first goes to [faculty] for her support, guidance, 
and help as my dissertation advisor. I would like to thank all the [research group] members who 
contributed to discussions concerning the analysis and findings of this study. I would also like to 
thank the instructors whose participation made this study possible. 

Specialized Content

Students Instruction

Representations



References 
Author (2017). Details omitted for blind review. 
Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes 

it special? Journal of Teacher Education, 59, 389-407. doi: 10.1177/0022487108324554 
Bargiband, J., Bell, S., & Berezovski, T. (2016). Guided reflections on mathematical tasks: 

Fostering MKT in college geometry. Proceedings of the 19th Annual Conference on 
Research in Undergraduate Mathematics Education, (pp. 414-419). Retrieved from 
http://sigmaa.maa.org/rume/Site/Proceedings.html 

Bass, H. (1997). Mathematicians as educators. Notices of the American Mathematical Society, 
44, 18-23. Retrieved from http://www.ams.org/notices 

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., … Tsai, Y.-M. (2010). 
Teachers’ mathematical knowledge, cognitive activation in the classroom, and student 
progress. American Educational Research Journal, 47, 133-180. doi: 
10.3102/0002831209345157 

Begle, E. G. (1972). Teacher knowledge and student achievement in algebra. Palo Alto, CA: 
Stanford University Press.  

Bressoud, D., Mesa, V., & Rasmussen, C. (Eds.). (2015). Insights and recommendations from the 
MAA national study of college calculus. Washington, DC: Mathematical Association of 
America. 

Callingham, R., Beswick, K., Clark, J., Kissane, B., Serow, P., & Thornton, S. (2012, July). 
Mathematical knowledge for teaching of MERGA members. Paper presented at the Annual 
Meeting of the Mathematics Education Research Group of Australasia (MERGA), Singapore. 

Carpenter, T. P., & Fennema, E. (1991). Research and cognitively guided instruction. In E. 
Fennema, T. P. Carpenter, & S. J. Lamon (Eds.), Integrating research on teaching and 
learning mathematics (pp. 2-19). Albany, NY: State University of New York Press. 

Castro Superfine, A., & Li, W. (2014). Exploring the mathematical knowledge needed for 
teaching teachers. Journal of Teacher Education, 65(4), 303-314. 

Charalambous, C. Y. (2010). Mathematical knowledge for teaching and task unfolding: An 
exploratory study. The Elementary School Journal, 110, 247-278. doi: 10.1086/648978 

Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five 
approaches (3rd ed.). Los Angeles: SAGE Publications. 

Ellis, J. (2014). Preparing future professors: Highlighting the importance of graduate student 
professional development programs in calculus instruction. Proceedings of the Joint Meeting 
of PME 38 and PME-NA 36, 3, 9-16.  

Firouzian, S., & Speer, N. (2015). Integrated mathematics and science knowledge for teaching 
framework: Knowledge used in teaching applied derivative problems. Proceedings of the 
18th Annual Conference on Research in Undergraduate Mathematics Education, (pp. 524-
536). Retrieved from http://sigmaa.maa.org/rume/Site/Proceedings.html 

Gordon, S. P. (2008). What’s wrong with college algebra? PRIMUS, 18, 516-541. doi: 
10.1080/10511970701598752 

Greenwald, R., Hedges, L. V., & Laine, R. D. (1996). The effect of school resources on student 
achievement. Review of Educational Research, 66, 361-396. doi: 
10.3102/00346543066003361 

Hanushek, E. A. (1981). Throwing money at schools. Journal of Policy Analysis and 
Management, 1, 19-41. doi: 10.2307/3324107 

http://sigmaa.maa.org/rume/Site/Proceedings.html
http://www.ams.org/notices
http://sigmaa.maa.org/rume/Site/Proceedings.html


Hanushek, E. A. (1996). A More complete picture of school resource policies. Review of 
Educational Research, 66, 397-409. doi: 10.3102/00346543066003397 

Hauk, S., Toney, A., Jackson, B., Nair, R., & Tsay, J.-J. (2013). Illustrating a theory of 
pedagogical content knowledge for secondary and post-secondary mathematics instruction. 
Proceedings of the 16th Annual Conference on Research in Undergraduate Mathematics 
Education (Vol. 1) , 308-322. Retrieved from 
http://sigmaa.maa.org/rume/Site/Proceedings.html 

Hill, H., Blunk, M., Charalambous, C., Lewis, J., Phelps, G. C., Sleep, L., & Ball, D. L. (2008). 
Mathematical knowledge for teaching and the mathematical quality of instruction: An 
exploratory study. Cognition and Instruction, 26, 450-511. doi: 
10.1080/07370000802177235 

Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for 
teaching on student achievement. American Educational Research Journal, 42, 371-406. doi: 
10.3102/00028312042002371 

Hill, H., Sleep, L., Lewis, J., & Ball, D. L. (2007). Developing measures of teachers’ 
mathematical knowledge for teaching: What knowledge matters and what evidence counts. In 
K. F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 
111-155). Reston, VA: National Council of Teachers of Mathematics. 

Jaworski, B., Mali, A., & Petropoulou, G. (2017). Critical theorising from studies of 
undergraduate mathematics teaching for students meaning making in mathematics. 
International Journal of Research in Undergraduate Mathematics Education, 3, 168-197. 
doi: 10.1007/s40753-016-0044-z 

Krauss, S., Baumert, J., & Blum, W. (2008). Secondary mathematics teachers’ pedagogical 
content knowledge and content knowledge: Validation of the COACTIV constructs. ZDM, 
40, 873-892. doi: 10.1007/s11858-008-0141-9 

Kung, D. T., & Speer, N. (2009). Mathematics teaching assistants learning to teach: Recasting 
early teaching experiences as rich learning opportunities. In L. L. B. Border, N. Speer, & T. 
J. Murphy (Eds.), Research on graduate students as teachers of undergraduate mathematics. 
Stillwater, OK: New Forums Press. 

Ma, L. (2010). Knowing and teaching elementary mathematics: Teachers’ understanding of 
fundamental mathematics in China and the United States (2nd ed.). New York, NY: 
Routledge. 

McCrory, R., Floden, R., Ferrini-Mundy, J., Reckase, M. D., & Senk, S. L. (2012). Knowledge 
of algebra for teaching: A framework of knowledge and practices. Journal for Research in 
Mathematics Education, 43, 584-615. Retrieved from 
http://www.nctm.org/publications/journal-for-research-in-mathematics-education 

Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: A methods 
sourcebook (3rd ed.). Thousand Oaks, CA: SAGE Publications. 

Musgrave, S., & Carlson, M. P. (2017). Understanding and advancing graduate teaching 
assistants’ mathematical knowledge for teaching. The Journal of Mathematical Behavior, 45, 
137-149. doi: 10.1016/j.jmathb.2016.12.011 

Rasmussen, C., Ellis, J., Lindmeier, A., & Heinze, A. (2013). Who is switching out of calculus 
and why. Proceedings of the 37th Conference of the International Group for the Psychology 
of Mathematics Education, 4, 73-80.  

http://sigmaa.maa.org/rume/Site/Proceedings.html
http://www.nctm.org/publications/journal-for-research-in-mathematics-education


Rogers, K. C. (2012). The proof is in the practice? Graduate teaching assistants and future 
teachers (Doctoral Dissertation). Retrieved from ProQuest Dissertations & Theses A&I. 
(1038835959)  

Rogers, K. C., & Steele, M. D. (2016). Graduate teaching assistants’ enactment of reasoning-
and-proving tasks in a content course for elementary teachers. Journal for Research in 
Mathematics Education, 47, 372-419. doi: 10.5951/jresematheduc.47.4.0372 

Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject 
knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher 
Education, 8, 255-281. doi: 10.1007/s10857-005-0853-5 

Schoenfeld, A. H. (1998). Toward a theory of teaching-in-context. Issues in Education, 4, 1-94. 
doi: 10.1016/S1080-9724(99)80076-7 

Schoenfeld, A. H. (1999). Models of the teaching process. The Journal of Mathematical 
Behavior, 18, 243-261. doi: 10.1016/S0732-3123(99)00031-0 

Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard 
Educational Review, 57, 1-23. doi: 10.17763/haer.57.1.j463w79r56455411 

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational 
Researcher, 15(2), 4-14. doi: 10.3102/0013189X015002004 

Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: From research 
to practice. Mathematics Teaching in the Middle School, 3, 344-350.  

Speer, N., & Hald, O. (2008). How do mathematicians learn to teach? Implications from research 
on teachers and teaching for graduate student professional development. In M. Carlson & C. 
Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate 
mathematics education (pp. 305-217). Washington, DC: Mathematical Association of 
America. 

Speer, N. M., King, K. D., & Howell, H. (2014). Definitions of mathematical knowledge for 
teaching: Using these constructs in research on secondary and college mathematics teachers. 
Journal of Mathematics Teacher Education, 18, 105-122. doi: 10.1007/s10857-014-9277-4 

Speer, N. M., Smith, J. P., III, & Horvath, A. (2010). Collegiate mathematics teaching: An 
unexamined practice. The Journal of Mathematical Behavior, 29, 99-114. doi: 
10.1016/j.jmathb.2010.02.001 

Speer, N. M., & Wagner, J. F. (2009). Knowledge needed by a teacher to provide analytic 
scaffolding during undergraduate mathematics classroom discussions. Journal for Research 
in Mathematics Education, 40, 530-562. doi: 10.1007/s11858-015-0738-8 

Stake, R. E. (1995). The art of case study research. Thousand Oaks: SAGE Publications. 
Stein, M. K., Remillard, J., & Smith, M. S. (2007). How curriculum influences student learning. 

In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A 
project of the National Council of Teachers of Mathematics (pp. 319-369). Charlotte, NC: 
Information Age Pub. 

Thompson, P. W., Castillo-Chavez, C., Culbertson, R. J., Flores, A., Greeley, R., Haag, S., 
… Rutowksi, R. L. (2007). Failing the future: Problems of persistence and retention in 
Science, Technology, Engineering, and Mathematics (STEM) majors at Arizona State 
University.  Tempe, AZ: Office of the Provost. Retrieved from http://pat-
thompson.net/PDFversions/2007FSICfinalreport.pdf 

Vincent, B., & Sealey, V. (2015). Connecting research on students’ common misconceptions 
about tangent lines to instructors’ choice of graphical examples in a first semester calculus 
course. Proceedings of the 18th Annual Conference on Research in Undergraduate 

http://pat-thompson.net/PDFversions/2007FSICfinalreport.pdf
http://pat-thompson.net/PDFversions/2007FSICfinalreport.pdf


Mathematics Education, 1039-1043. Retrieved from 
http://sigmaa.maa.org/rume/Site/Proceedings.html 

Yin, R. K. (2014). Case study research: Design and methods (5th ed.). Los Angeles, CA: SAGE 
Publications. 

 

http://sigmaa.maa.org/rume/Site/Proceedings.html

