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Ordinary differential equations (ODEs) comprise an important tool for mathematical modelling 
in science and engineering. This study focuses on how students in an engineering system 
dynamics course organized the act of setting up ODEs for complex engineering contexts. 
Through the lens of ODEs as a “coordination class” concept, we examined the strategies that 
seemed to guide the students’ interpretations of problem tasks and their activation of knowledge 
elements during the tasks, as the students worked to produce ODEs for those tasks. This led to 
our uncovering of three main strategies guiding the students’ work, and the finding that being 
able to flexibly draw on all of these strategies may be beneficial for student success. 
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Ordinary differential equations (ODEs) comprise a branch of mathematics that is extremely 
useful for mathematical modelling in a range of STEM (science, technology, engineering, and 
mathematics) fields. For example, it can be used in biology to model population dynamics, in 
engineering to model the evolution of mechanical system, and in physics to model changing 
quantities. A growing body of research has been examining how students understand, solve, and 
interpret ODEs in mathematics. Most of this work has focused on how students understand 
solution processes and the solutions themselves (Arslan, 2010; Camacho-Machín, Perdomo-
Díaz, & Santos-Trigo, 2012; Habre, 2000; Rasmussen, 2001; Rasmussen & Blumenfeld, 2007). 
From this we know that students may struggle with the idea of a function being a solution 
(Rasmussen, 2001), that students may be hesitant about using graphical solution procedures 
(Camacho-Machín et al., 2012; Habre, 2000), and that equilibrium solutions are not well 
understood by students (Rasmussen, 2001; Zandieh & McDonald, 1999). 

There is much less we know about how students organize their work for setting up ODEs for 
given contexts. Rowland and Jovanoski (2004) and Camacho-Machín and Guerrero-Ortiz (2015) 
each examined the setting-up process and interpretation of simple ODEs and found that students 
struggled to use “rate of change” thinking when doing so. They often thought of constants in 
ODEs as representing constant amounts rather than constant rates of change. While these studies 
provide useful results, the contexts used in the tasks were fairly simple and all the needed 
information was provided in the task. By contrast, in engineering, students encounter quite 
complex situations for which not all of the information is directly presented. This type of 
situation implies more challenges for the students as they attempt to organize their work to 
produce an ODE. We believe it important to extend the research on ODEs by examining how 
students go about the process of setting up differential equations for tasks that involve 
complicated systems. In summary, this report is meant to investigate the research question: What 
strategies do students use when setting up ODEs for complex engineering tasks? 

Coordination Class Concepts 
For this study, we used the lens of coordination classes from the knowledge-in-pieces 

paradigm (diSessa & Sherin, 1998). Coordination classes are useful for describing concepts 
whose purpose is “getting information” (p. 1171). In the context of system dynamics, the 
information regarding the system is obtained through an ODE. A coordination class concept 



involves readout strategies and causal nets. Readout strategies are the “means of seeing things 
that relate to the target information” (diSessa, 2004, p. 141). For our purposes, we see readout 
strategies in terms of how one interprets external stimuli. The causal net is “the set of all possible 
inferences that lead to determining the relevant information” (diSessa, 2004, p. 141). That is, 
once a person has interpreted external things, those interpretations can then be linked with other 
pieces of knowledge so as to progress toward the desired information. Causal net elements might 
consist of known relationships, formulas, informal ideas, beliefs, and so on. 

Next, diSessa and Wagner (2005) define a concept projection as the collection of knowledge 
elements related to that concept, as well as the guiding strategies, that a person uses in a 
particular context. The strategy used to obtain the information impacts the readouts and causal 
net elements that are activated. For example, suppose one wants to find the volume of a three-
dimensional object (the desired information). One might first use a readout strategy to identify 
whether the object’s shape is a typical geometric shape, or not. If it is, such as a box, the person 
might activate the causal net knowledge element V=lwh. Using this geometric formula, they 
could obtain the object’s volume. We could call this a “geometric strategy,” because the person 
used the geometric regularity of the object to determine how to find the information. On the 
other hand, if the object is an irregular shape, the person might instead activate a causal net 
knowledge element of Archimedes principle, which states that the volume displaced by water is 
equal to the volume of the submerged object. The person could then use that inference to 
determine the object’s volume. We could call this a “experiment strategy,” because the person 
would enact an experiment based on a known principle to determine the information. 

Data Collection and Analysis 
In order to provide insight into the strategies students use to set up ODEs for complex tasks, 

we recruited students for interviews who were taking an engineering “system dynamics” course. 
We chose a system dynamics course because (1) taking an ODE course is a prerequisite for the 
system dynamics course, meaning all the students had experience with ODEs; and (2) the system 
dynamics course is designed entirely around the idea of setting up and solving ODEs for 
different engineering systems. Thus, the students were in the process of learning to set up ODEs 
for complex contexts, though the instructor mostly just lectured on how to set up ODEs. To 
recruit students from the system dynamics class, we first administered a survey to the entire class 
to obtain background information on how the students interpreted a generic ODE. The survey 
displayed the equation ay”+by’+cy = 0 and asked the students to describe what this equation 
meant and what the various symbols in it represented. We chose two students who provided 
strong responses regarding the equation (Rebecca and Zane), two students who provided 
moderate responses about the equation (Harry and Josh), and one student who showed some 
weaknesses in their understanding of the equation (Kira). These five students participated in two 
interview sessions where they were asked to set up an ODE for a total of three different tasks. 

We designed the interviews to focus on contexts that matched those seen in the students’ 
system dynamics course. The three tasks consisted of a mechanical context, an electrical context, 
and a fluid context. For the purposes of this abbreviated conference report, we focus on the 
mechanical task (task 1) and the fluid task (task 3), shown in Figure 1, as they suffice for 
describing the main strategies the students used for organizing their work of setting up an ODE. 
For the interview, the students worked out the tasks, explaining their thinking aloud, and the 
interviewer asked follow-up and clarifying questions while the student worked.  

The interview data were analyzed in two separate phases. In the first phase, which was 
essentially a preliminary phase in terms of this paper’s research question, we identified readouts 



and causal net elements the students used while working on the tasks. Operationally, readouts 
were defined as any place in the data where a student appeared to make a direct interpretation of 
any part of the given interview task, whether symbols, words, or parts of the figure. The apparent 
interpretation was recorded as the “readout.” Causal net elements were operationally defined as 
any time a student mentioned, wrote, or suggested an idea that was not a direct interpretation of a 
part of the task. The substance of the causal net element, as well as what other piece(s) of 
information may have triggered its activation, was recorded as a “causal net link.” 

In the second phase, which allowed a more direct answer to this paper’s research question, 
we used the resulting readouts and causal net links recorded in phase one to examine the overall 
flow of the students’ work. This allowed us to infer strategies the students appeared to be using 
to set up the ODE. We did not have pre-set notions of what the strategies would consist of, but 
rather let the nature of the strategies emerge from the student’s documented process. This led to 
the identification of three main strategies, described in the next section. Lastly, we determined 
whether the strategies were productive for the students, by observing (1) whether a particular 
strategy helped the students produce a solution, (2) whether that solution was correct, and (3) 
whether the student had to revise their solution because the approach led to a “dead end.” 

 

     
Figure 1. The mechanical and fluid tasks from the interviews (taken from Palm, 2005, p. 244 and 397). 

Results 
In this section, we describe, one by one, the three main strategies used by these five students 

to guide their work setting up ODEs for the tasks. We do this by providing a single illustrative 
case from the data for each of the three main strategies. We then provide a summary about which 
students used each strategy, and end by discussing possible benefits of the three strategies. 

Strategy #1: Diagram-based Approach 
To illustrate the first strategy, we describe the case of Zane working on task 1. While his 

complete work is too lengthy to describe here in its entirety, we highlight enough of his work to 
hopefully demonstrate his main guiding strategy. An important early readout in Zane’s work was 
to view the bar in the figure as the main object about which to reason. This led Zane to draw 
what, in engineering, is called a free-body diagram. His diagram consisted of the bar, by itself, 
which he continually annotated and revisited throughout his work (see Figure 2). The diagram 
helped him focus on two other readouts, namely the top of the bar and the bottom of the bar 
(arrows at the top and bottom of his diagram). He then inferred that forces and horizontal 

Task 1: Assuming that θ is small, derive the 
equation of motion of the pendulum shown in the 
figure. The input is y(t) and the output is θ. The 
equilibrium corresponds to y = θ = 0. 

Task 3: The cylindrical tank shown in the figure has 
a circular bottom of area A. The volume inflow rate 
from the flow source is qvi(t), a given function of 
time. The orifice in the side wall has an area A0 and 
discharges to atmospheric pressure pa. Develop a 
model of the liquid height h. 



displacement were both relevant attributes of the top and bottom of the bar. The top arrow was 
linked to a single force from the upper spring, while the bottom arrow was linked to two forces 
from the lower spring and the damper. His diagram also helped him visualize the implicit 
presence of two right triangles each having θ as an angle (added to Figure 2). He used the 
triangles, together with Hooke’s Law (F=kꞏΔx) and the fact that sin(θ) ≈ θ (inferred from the 
“small angle”), to describe the three forces in terms of L1, L2, and θ (seen in Figure 2 as k1L1θ 
and k2L2θ for the springs, and cL2ߠሶ  for the damper). Causal net links between velocity and first 
derivative and rotational acceleration and second derivative allowed him to invoke the ݕሶ ሶߠ , , and 
ሷߠ  seen around the “cloud” in Figure 2. Zane used the standard engineering “dot” notation for 
time-derivatives, as did the other students. While there are additional science-based knowledge 
elements Zane used along the way, such as a “moment” being force times the distance from the 
center of rotation, and moments I  , we can see that most of his readouts and causal net 

links were scaffolded by his free-body diagram. Putting all of these elements together, Zane was 
successful at producing a correctly set up ODE for this task, shown in Figure 3. 

 

 
Figure 2. Zane’s initial free-body diagram (circled) and his work based off the diagram 

 

 
Figure 3. Zane’s correctly set up ODE for task 1. 

 
Having briefly recapped Zane’s work, we can see that his overall strategy consisted of using 

a single diagram to organize most of his readouts and causal net links. Thus, we call Zane’s 
strategy the “diagram-based” approach. In general, we can think of the diagram approach as a 
general-to-specific method that initially focuses on the entire system. Then, within that system, 
the student can attend to individual parts that have relevance to the system. The diagram 
approach is not limited to mechanical free-body diagrams, but can also be seen in “schematics” 
for electrical contexts and “control volumes” for fluid contexts. In fact, the simple existence of 
names for these types of diagrams in various engineering contexts suggests its generalizable 
usefulness as a strategy for setting up equations, which apparently extends to ODEs as well. 

Strategy #2: Components-based Approach 
The second strategy we describe contrasts with the diagram-based approach in that it could 

be considered a specific-to-general strategy. To illustrate it, we describe the case of Rebecca also 
working on task 1. Unlike Zane, who first “read” the bar in isolation, Rebecca’s initial readouts 
were to scan the task to locate and identify various individual elements and to begin to keep track 
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of them. She immediately identified three elements, k1, k2, and c, each as representing forces. 
This is different from Zane, who initially began with only two elements, namely the top and 
bottom of the bar. Thus, we can see a distinction in what these strategies might focus on. She 
then made the causal net link that each force multiplied to its distance from the center of rotation 
gives the moment at that point. Using these individual components, and the fact that the sum of 
moments equals ߠܫሷ , she wrote an early version of the ODE, shown in Figure 4.  

 
Figure 4. Rebecca’s initial equation, focused on compiling individual elements of the system. 

 
Rebecca then returned to each individual element in order to flesh each one out, which 

resembled Zane’s work at this point. She similarly inferred sin(θ) ≈ θ from the “small angle” in 
order to elaborate on Fk1, Fk2, and Fc. This approach is visible in her work shown in Figure 5, 
where she used a string of causal net links to establish how each element was related to y, ݕሶ , θ, ߠሶ , 
and ߠሷ . After finding each element in Figure 4 in terms of these variables, she combined them into 
a correctly set up ODE, shown in Figure 6. 

 
Figure 5. Rebecca’s work of focusing on each element and how it could be represented in terms of θ. 

 

 
Figure 6. Rebecca’s correctly set up ODE for task 1. 

 
In Rebecca’s work, rather than beginning with a diagram, we can see the strategy of reading 

out specific elements first and then subsequently trying to piece them together. Of course, there 
were many overlapping readouts and causal net inferences with Zane’s work, once she 
performed her initial organization of the task. Also, it is certainly true that Rebecca did employ 
holistic thinking in her work, evidenced by when she put the various components together, like 
in Figure 4. However, what is different and noteworthy is that her guiding initial strategy was 
“reading” the task through the identification of each individual element and then figuring out 
how to compile them. For Rebecca, the individual elements seem to have come first, and then 
knowledge pieces were used to organize the elements into a coherent whole. We can see that, for 
Rebecca, this strategy was just as successful as Zane’s diagram approach, since it provided a 
direct path toward creating a correct ODE for this context. 

Strategy #3: Equation-based Approach 
For the third strategy, we again describe Rebecca’s work, but this time with task 3. An 

important initial readout for Rebecca in task 3 was simply to attend to the general fluid flow 
context of the problem, as opposed to any individual element within it. Her recognition of this 



type of context seemed to immediately activate a causal net link that an adaptation of Bernoulli’s 
equation governs these types of fluid contexts. This link allowed Rebecca to immediately invoke 
an entire equation as a single knowledge resource, qin – qout = ߩ ሶܸ ൅  ሶܸ (where q is a flow rate, ρߩ
is the fluid’s density, and V is the fluid’s volume in the container). That is, rather than piecing 
together an equation, as Zane and Rebecca (and other students) did for task 1, in this case an 
entire equation was recalled from memory because of its relevance to the context. The remaining 
work for Rebecca in this task was then to manipulate this equation by making substitutions or 
cancelations that would produce the desired ODE. 

To do so, Rebecca first used the readout of “water” to infer incompressibility, meaning that 
the density would not change and ߩሶ  = 0 (see Figure 7, and note the scribbled out “ߩሶܸ” above the 
last term). Next, she used the facts that V = Ah, and that the cross-sectional area was constant, to 

substitute ܣߩ ሶ݄  in place of	ߩ ሶܸ . Lastly, she used Toricelli’s Law, 2outq c gh ,  to make a 

substitution for qout (where h is the distance between the fluid surface and the outflow). Notice 
that in her final equation (Figure 8), she could not recall exactly what was supposed to be 
“inside” the square root, and so her expression diverges a little from a “correct” solution. 
However, had she had access to a book or sheet of equations, she could have easily corrected this 
and thus we still consider her final ODE to essentially be “correct.” Also, for clarification, her 
“sgn” term is the “sign function” for whether the argument is positive or negative. 

 
Figure 7. Rebecca’s direct invocation of an entire equation governing fluid flow. 

 

 
Figure 8. Rebecca’s essentially “correct” final ODE for task 3. 

 
In general, Rebecca’s equation approach seemed to rely on the fact that there was a single 

main equation governing that particular class of systems. From that equation, Rebecca centered 
all her efforts to obtain the ODE by manipulating the equation through substitutions or 
cancellations. Thus, the use of this strategy would first require the perception (i.e. causal net 
link) that there is, in fact, such an equation that can be used for a given system. This strategy was 
also successful in that it provided Rebecca a clear path toward an essentially correct ODE. 

Approaches Used by All of the Students 
We now provide a brief summary of all five students in terms of which strategies they used 

(diagram, component, or equation) and whether they were successful, partially successful, or 
unsuccessful at setting up an ODE (see Table 1). We note that we allowed “successful” set ups to 
include equations where there was a simple recall mistake, like Rebecca’s in task 3. We 
considered “partially successful” set ups to be those that had one or two significant flaws 
(beyond simple recall) but that still contained many correct elements in the equation. An 
“unsuccessful” set-up was one where the student never produced a final equation, or one in 
which the equation had multiple major flaws. 

We see in Table 1 that not all students confined themselves to a single strategy for a given 
task. Harry, Josh, and Kira each used multiple strategies for at least one task in order to help 
them progress in their work. In some ways, because these students struggled more than Zane and 
Rebecca, who each only used one strategy per task, one might conclude that using more 



strategies is a sign of weakness. However, we do note that using different strategies actually 
allowed Harry, Josh, and Kira to each make more progress than they would have otherwise made 
with a single strategy alone. That is, once they were stuck, switching modes to a different 
strategy often seemed to unlock additional causal net links that may have been hidden from them 
while using the other strategy, even if they did not fully reach a completed ODE. 

 
Table 1. Strategies used and whether the student was successful (S), partially successful (PS), or unsuccessful (UN) 
 Rebecca Zane Harry Josh Kira 
Task 1 Component 

(S) 
Diagram 
(S) 

Component 
(PS) 

Diag/Comp 
(PS) 

Diag/Comp/Eq 
(UN) 

Task 3 Equation 
(S) 

Equation 
(S) 

Diag/Eq 
(S) 

Diag/Eq 
(PS) 

Diag/Eq 
(S) 

Discussion of the Three Strategies 
We believe the empirical documentation of these three strategies provides some insight into 

how students might identify and use information relevant to ODEs in complex contexts through 
readouts and causal nets. While experts might see the strategies as equivalent, we believe there 
are nuances to each, and this report may be seen as an “unpacking” of possible ways to reason 
about ODEs for complex engineering tasks. In fact, our study suggests these strategies could be 
important in developing expertise. All three approaches were used by students to correctly set up 
ODEs for these complex tasks, or at least to construct partially correct ODEs, as seen in Table 1.  

We can see that there is not necessarily “one correct strategy” for a given problem. Rebecca 
and Harry both used the component approach to productive ends for task 1, but Zane and Josh 
both used the diagram approach instead to make progress on that task. While all of the students 
used the equation approach on task 3, Harry, Josh, and Kira also used the diagram approach (in 
the form of a “control volume”) to help further their work. Yet, while there may not be one 
correct strategy, we observe that the trends in Table 1 suggest some strategies being more easily 
invoked for some tasks than others. The equation approach was hardly used at all for task 1, but 
was used extensively for task 3. This gives evidence that some problems may lend themselves 
better to bringing in an overarching governing equation. For example, task 1 could be considered 
to have the governing equation moments I  , but this is not where these students tended to 

start. Rather, this equation emerged as a causal net link further down the line, once the students 
were ready to organize the elements into a whole. By contrast, the fluid flow equation seemed 
readily available as an immediate starting place for task 3. Thus, developing expertise in setting 
up ODEs in these types of contexts may have something to do with being able to recognize when 
it may be best to start with a diagram, start with individual components, or start with an equation. 

Since using multiple strategies helped the weaker students in this study make more progress 
than they otherwise would have with only a single strategy, evolving expertise could also 
partially deal with being able to switch strategy modes if a roadblock is reached within a task. 
Perhaps it is true that greater expertise may lead to better identification of a single productive 
approach, as with Rebecca and Zane. However, as students mature toward that point, becoming 
aware of which of the three strategies they are using may help them see the value in switching 
between strategies for a given task. This may help them develop better flexibility in which 
strategies they use, and to begin to see connections between certain problem types and certain 
strategies that are useful for that type. We see this exploratory study as a useful step, in that it 
could be expanded into a teaching experiment to confirm, refute, or nuance these results. 
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