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Abstract: Graphing tasks require students to engage in at least one of two activities: construct a 
graph and/or interpret a graph. Ideally, the meanings a student re-presents when constructing a 
graph are consistent with the meanings the student constructs from his/her sketched graph. 
However, this coherence is nontrivial. In this paper I present results from clinical interviews 
with university precalculus students to illustrate how students’ graphing actions can be governed 
by different images of covarying quantities. More specifically, I present two students’ 
mathematical activity to illustrate how these students’ imagined quantities to covary in different 
ways depending on whether they were reasoning about a situation, constructing a graph, or 
reasoning about that sketched graph. I conclude by hypothesizing that the way a student 
coordinates two quantities’ measures (e.g., asynchronous coordination of varying quantities or 
static coordination of measures) can inhibit him/her from imagining the same covariational 
relationship when constructing and interpreting graphs. 
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Researchers have found that students who imagine quantities to covary in a situation are not 

necessarily able to re-present that imagery graphically (e.g., Carlson, Jacobs, Coe, Larsen, & 
Hsu, 2002; Moore, Paoletti, Stevens, & Hobson, 2016). Moore et al. (2016) suggested that 
students’ meanings for graphs (such as graphs starting on the vertical axis, being read or drawn 
left-to-right, and passing the vertical line test) inhibit students from re-presenting images of the 
phenomenon that include covariational relationships. When students held these meanings for 
graphs they re-presented imagery that was distinct from how they initially imagined the 
quantities to covary in the situation. In this paper I extend Moore et al.’s (2016) work by 
exploring how the images a student constructs of the phenomenon influence both the graph the 
student constructs as well as the meanings the student constructs from that sketched graph. More 
specifically, I characterize two university precalculus students’ graphing schemes to study the 
relationship between how the student initially understands the quantities to covary, the 
understandings he/she re-presents when constructing the graph, and the understandings he/she 
constructs from his/her completed graph.  

  
Background 

 
Covariational reasoning is  “the cognitive activities involved in coordinating two varying 

quantities while attending to the ways in which they change in relation to each other” (Carlson et 
al., 2002, p. 354). Thompson and Carlson (2017) leveraged past research on variational and 
covariational reasoning to propose six major levels of covariational reasoning (see Figure 1) that 
are not constrained to reasoning about specific function types or methods of representation. 
Thompson and Carlson explain that the level of a students’ covariational reasoning depends on 
three constructions: (1) the quantities the student is conceptualizing, (2) how the student 
imagines those quantities to vary, and (3) how the student coordinates and unites two changing 



quantities both in thought and representation. I elaborate on these three constructions in the 
following paragraph. 

 
Major Levels of Covariational Reasoning 
Level Description 
Smooth Continuous 
Covariation 

The person envisions increases or decreases (hereafter, changes) in one 
quantity’s or variable’s value (hereafter, variable) as happening 
simultaneously with changes in another variable’s value, and they envision 
both variables varying smoothly and continuously. 

Chunky Continuous 
Covariation 

The person envisions changes in one variable’s value as happening 
simultaneously with changes in another variable’s value, and they envision 
both variables varying with chunky continuous variation.  

Coordination of Values The person coordinates the values of one variable (x) with values of another 
variable (y) with the anticipation of creating a discrete collection of pairs  
(x, y). 

Gross Coordination of 
Values 

The person forms a gross image of quantities’ values varying together, such 
as “this quantity increases while that quantity decreases”. The person does not 
envision that individual values of quantities go together. Instead the person 
envisions a loose, non-multiplicative link between the overall changes in two 
quantities’ values. 

Pre-coordination of 
Values 

The person envisions two variables’ values varying, but asynchronously, one 
variable changes, then the second variable changes, then the first, etc. The 
person does not anticipate creating pairs of values as multiplicative objects. 

No Coordination The person has no image of variables varying together. The person focuses on 
one or another variable’s variation with no coordination of values. 

Figure 1: Thompson and Carlson’s Major Levels of Covariational Reasoning, highest to lowest 
(Thompson and Carlson, 2017, p. 23) 

 
Thompson (1990, 2011) explained that a quantity is a mental construction of a quality of an 

object that one can imagine measuring. Students construct quantities by conceptualizing an 
attribute to be measured and the way in which they would measure it. How the student imagines 
each quantity to vary constitutes her variational reasoning1. A student’s conception of time is 
closely related to her variational reasoning since imagining a quantity’s measure to change 
necessarily involves imagining time elapsing. Thompson (2011) described two ways students 
conceptualize time: experiential time “the experience of time passing” and conceptual time “an 
image of measured duration” (p. 27). Both experiential time and conceptual time are essential to 
covariational reasoning. For example, to construct what Castillo-Garsow (2012) calls smooth 
images of change one must imagine change in progress so that she imagines a quantity changing 
in her experiential time. Conceptual time, on the other hand, is essential to coordinate two 
quantities’ measures at distinct moments in time (Thompson, 2011).  The final construction 
Thompson and Carlson (2017) describe is the construction of a multiplicative object. As 
Saldanha and Thompson (1998) explained, a multiplicative object is a cognitive construction that 
enables one to hold two quantities in mind simultaneously. If one has coordinated two varying 
quantities through a multiplicative object then she anticipates that as one quantity changes the 
other quantity is changing as well. As a result, the student is able to hold both quantities in mind 
as they change together.  

Theoretical Perspective 
 
                                                

1 See Thompson and Carlson (2017) for description of six major levels of variational reasoning. 



According to Piaget (1967, 1985), actions are the source of all knowledge. Individuals 
organize their actions into schemes that include when to apply the action, an anticipation of the 
result of acting, how these actions work together, and eventually how these actions can chain 
together. As one engages in mathematical thinking he activates different scheme(s) in order to 
make sense of the task.  

In mathematics, students are often asked to re-present their mathematical activity in the form 
of diagrams, graphs, formulas, tables, etc. If the student understands the graph (or formula, table, 
etc.) to be a depiction of his thinking then the student has an image of the mathematical activity 
he re-presented and the graph is a representation of that image. I emphasize the distinction 
between re-presenting and representing to be able to study student’s graphing activity in the case 
the student does not anticipate he is representing, or creating a picture of, his mathematical 
thinking to then reason about.  

 
Methodology 

 
The subjects in this study were three university students: Ali, Bryan, and Sue. At the time of 

the study these students had recently completed precalculus but had not yet taken calculus. These 
students were selected to participate in the study because they collectively demonstrated different 
ways of engaging in covariational reasoning in a recruitment interview (see Frank, 2017 for more 
details on recruitment and selection). After being selected, each student participated in a two-
hour one-on-one task based clinical interview (Clement, 2000). The purpose of the clinical 
interview was to characterize each student’s meanings for graphs.   

After completing the interview process I engaged in retrospective analysis by identifying 
instances that provided insights into the relationship between the understandings the student re-
presented when constructing a graph and how the student understood his/her sketched graph. I 
used these instances to generate tentative models of each student’s schemes for graphing. I tested 
these models by searching for instances that confirmed or contradicted my model and repeatedly 
refined my model until it accounted for the student’s mathematical activity. 

 
Results 

 
Of the three students who participated in the study two students (Ali and Bryan) 

conceptualized graphs in terms of varying quantities. Sue, on the other hand, conceptualized 
graphs as pictures of an object’s motion (consistent with Monk’s (1992) notion of iconic 
translations). In this section I describe how Ali and Bryan imagined quantities to covary when 
reasoning about a situation, when constructing a graph, and when reasoning about their sketched 
graphs.  

 
Pre-Coordination of Values: The Story of Ali 

When Ali created a graph from a contextual description of a situation she engaged in two 
distinct activities. First, Ali generated a shape by tracking one quantity’s variation as she 
imagined that variation in her experiential time. Then, Ali used the properties of the shape she 
created to reason asynchronously about the variation of the two quantities labeled on the graph’s 
axes. If the shape she created did not match her anticipation of how each quantity varied, then 
she guessed shapes from her memory of past graphing activities until she picked a shape that 
matched how she imagined each quantity to vary. This suggests that Ali used distinct and 



uncoordinated systems of actions when generating graphs (drawing shapes) and understanding 
her sketched graphs (reasoning about two quantities’ asynchronous variation). I will illustrate 
Ali’s graphing scheme with her engagement in the skateboard task (see Figure 2).  

 

A skateboarder skates on a half-pipe like the one shown.  
The skateboarder goes across the half-pipe and then  

returns to the starting position. 
 

Figure 2: Description of skateboard task. 
 
I asked Ali to graph the skateboarder’s horizontal distance to the right of the starting position 

relative to the skateboarder’s vertical distance above the ground. Ali made three attempts 
drawing the graph (see Figure 3). 

   
Ali’s first attempt Ali’s second attempt Ali’s third attempt 

 
Figure 3: Ali’s three attempts to graph skateboarder’s horizontal distance from start relative to 
his vertical distance above the ground. 
 

On Ali’s first attempt she drew an oscillating curve in the fourth quadrant (Figure 3). Since 
Ali imagined the half-pipe below ground, it seems Ali made this graph by tracking how she 
imagined the skateboarder’s vertical distance changing as she imagined the that variation in her 
experiential time. After drawing the curve, and without prompting, Ali determined her graph was 
incorrect because “the graph I drew is showing that the vertical distance is increasing the whole 
time.” She went on to draw two more shapes (Figure 3) and each time appropriately reasoned 
why her sketched graph was incorrect. For example, Ali rejected her second attempt (a side-ways 
U-shape in the fourth quadrant) since it showed the vertical distance was positive when she 
wanted to show the vertical distance was negative. After Ali rejected her third graph I asked her 
to explain her approach to graphing (Excerpt 1).  

 
Excerpt 1: Ali’s explanation of making graphs by guessing and checking shapes 
1 
2 
3 
4 
5 
6 
7 

Int: 
Ali: 

What are you doing when you are trying to figure out what graph it could be? 
Um. Well I think of like. I either focus. I go back and forth with like okay 
vertical distance and horizontal distance. So I think of potential like, I guess 
shapes, that can be drawn and then I'm like does this fit the characteristic of the 
horizontal distance. If it doesn't then it is out and I think of another one. And 
so. That's how I usually go about with graphing graphs until I eventually - I'm 
like this one fits both criteria. 

In Excerpt 1, Ali describes her three-step approach to graphing: (1) draw a shape by 
“think[ing] of potential … shapes that can be drawn”, (2) consider what the shape conveys about 
the variation of each quantity separately, and (3) adjust the shape until it matches how she 
imagined each quantity to vary. This final step is significant because it implies Ali constructed 



two distinct images of the quantities’ covariation; Ali constructed an image of each quantity’s 
variation from the graph that she compared to her image of each quantity’s variation from her 
understanding of the situation. This suggests Ali had an image of the quantities’ variation that 
she could have re-presented when making her graph.  

I hypothesize Ali did not make her graph by re-presenting the images of varying she 
constructed from the phenomenon because she attended to each quantity’s variation separately, 
what Thompson and Carlson (2017) called a pre-coordination of values. For example, Ali 
attended only to the skateboarder’s vertical distance when determining the validity of her first 
and second graphs and attended only to the skateboarder’s horizontal distance when determining 
the validity of her third graph. Additionally, in Excerpt 1 Ali explained that she “go[es] back and 
forth with like vertical distance and horizontal distance…like does this one fit the characteristic 
of horizontal distance”. I take this as evidence that Ali understood the shape of a graph to show 
how each quantity varied separately.  

By imagining each quantity’s variation separately I claim that Ali did not have a single image 
from having coordinated two quantities’ variation that she could attend to when making her 
graph. In other words, Ali did not have a way to think about making one shape that would 
convey how the skateboarder’s horizontal distance changed and how the skateboarder’s vertical 
distance changed. Instead, Ali was constrained to making a graph by re-presenting only one of 
her images of variation (first attempt in Figure 3) or guessing and checking shapes (second and 
third attempt in Figure 3). In summary, it seems Ali’s asynchronous coordination of the two 
quantities’ variation inhibited her from attending to both quantities’ variation when making her 
graph.  

 
Coordination of Values: The Story of Bryan 

Like Ali, Bryan demonstrated different conceptualizations of the varying quantities when 
constructing his graph and when reasoning about his graph. More specifically, Bryan constructed 
graphs by re-presenting his experience imagining a continuously varying quantity but he did not 
reason about his graph in terms of a quantity’s continuous variation. Instead, he reasoned about 
his graph by coordinating static states in each quantity’s variation. I will illustrate Bryan’s 
graphing scheme with his engagement in the bottle evaporating task2. 

In the bottle evaporating task I asked Bryan to imagine a spherical bottle filled with water 
that was left outside to evaporate. Then I asked him to graph the height of water in the bottle 
relative to the volume of water in the bottle as the water evaporated. Before Bryan constructed a 
graph he reasoned, “When volume is maximum the height should be maximum and when 
volume is zero height should be zero.” This suggests Bryan coordinated two quantities’ measures 
at two moments in time. He proceeded to draw a straight line from the top middle of the plane 
that fell from left to right (see Figure 4, red line).  

 
Figure 4: Bryan's initial (red) and revised (blue) graph for the evaporating water problem (task 
adapted from Paoletti & Moore, 2016) 

                                                
2 Bottle evaporating task from Paoletti and Moore (2016). 



 
From my perspective, the line Bryan drew was not a re-presentation of the pairs of measures 

he imagined in the situation. Instead, it seems Bryan made his initial point with the anticipation 
of showing the simultaneous state of maximum height and maximum value. Then he drew a line 
by imagining the height of the water decreasing as he imagined the water in the bottle 
evaporating. This suggests that Bryan constructed his graph by imagining the gross variation of 
the height of the water in the moment he imagined that variation in his experiential time. 

After Bryan drew the line he reconstructed his initial image of two pairs of quantities’ 
measures to reason that his graph should show maximum height and maximum volume. He 
determined that his graph did not show this relationships saying, “It doesn’t make sense. Because 
over here (points to start of line in top middle of plane) it says height is maximum but volume is 
not maximum (points to intersection of line with horizontal axis).” Bryan drew a new graph that 
was a vertical reflection of his original graph about its midpoint; his graph now decreased from 
right to left (see Figure 4 blue line). Bryan explained that now he understood his graph to show 
the height is maximum when the volume is maximum and also show the height is minimum 
when the volume is minimum.  

In summary, Bryan engaged in three distinct activities when completing the bottle 
evaporation task. First he imagined each quantity’s (discrete) variation and coordinated the two 
varying quantities by constructing pairs of measures, a point’s coordinates. Then he drew a line 
by re-presenting his experience attending to one quantity’s gross variation as he imagined it 
changing in his experiential time. Finally, he reconstructed his initial image of pairs of 
quantities’ sizes to determine if the behavior of the sketched graph matched his anticipation of 
the relationship between the quantities’ measures.  

I hypothesize that Bryan did not make his graph by re-presenting his initial image of pairs of 
measures because he could not anticipate creating these pairs of measures as he imagined a 
quantity to continuously vary in his experiential time. In other words, it seems that Bryan needed 
to imagine a static state in the quantities’ variation in order to coordinate two quantities’ 
measures. As soon as he imagined one quantity’s measure to change he could no longer 
coordinate two quantities’ measures. This implies that the way Bryan coordinated two varying 
quantities inhibited him from re-presenting his understanding of how two quantities change 
together when making his graph. 

 
Discussion 

 
Ali and Bryan both demonstrated different images of covarying quantities when making a 

graph and when reasoning about that sketched graph. While this highlights the meanings students 
learn to impose on the products of their graphing actions, the findings from this study suggest 
that the meanings students construct from their sketched graph are consistent with how they 
imagined the quantities to covary in the situation. In the examples above, Ali reasoned separately 
about two quantities’ smooth variation both when reasoning about the situation and when 
reasoning about her graph. Similarly, Bryan reasoned about pairs of measures both when 
reasoning about the situation and when reasoning about his graph. This suggests that while a 
student might have distinct experiences making a graph and reasoning about that graph these 
experiences are actually governed by the same scheme. More specifically, the student’s activity 
making a graph is the result of an accommodation to their scheme for covariational reasoning in 
order to have actions available to them that persist under variation. For both Ali and Bryan this 



accommodation involved attending to one quantity as she/he imagined it changing in her/his 
experiential time. This is significant because it implies that students engage in different levels of 
covariational reasoning throughout their graphing activity because they are unable to re-present 
how they initially imagined the quantities to change together. 

This study provides evidence that the nature of the student’s coordination can inhibit him/her 
from re-presenting his/her understanding of how the quantities covary in the situation. For 
example, Ali coordinated two quantities’ variation by imagining each quantities’ variation 
separately. As a result, she did not have a single coordinated image to attend to when making her 
graph. Ali anticipated that she could use whatever shape she made to see the variation of each 
quantity, but she did not have a way to think about how to make that shape. Instead, she made 
her graph by guessing shapes until she picked one that appropriately matched how she imagined 
each quantity to vary.  

Bryan coordinated two quantities’ variation by coordinating static states in each quantity’s 
variation and constructing the coordinates of a point in the Cartesian plane. However, as soon as 
he imagined one of the quantities to vary he no longer had an image of a static state in which he 
could coordinate two measures. As a result, when he attempted to construct his graph he did not 
continuously coordinate quantities’ measures. Instead, Bryan made his graph by imagining one 
quantity changing in his experiential time. After making his graph, however, Bryan imagined 
coordinating measures to reason about what his sketched graph represented; he appeared to 
reason about an infinite collection of points on his graph. In summary, since Bryan’s image of 
plotting points did not persist under variation, Bryan could not re-present his coordination of the 
quantities’ variation as he imagined a continuously changing phenomenon.  

Researchers repeatedly emphasize the importance of holding two quantities in mind when 
constructing a graph (e.g., Moore et al., 2016; Whitmire, 2014). This study provides further 
evidence that this is a nontrivial construction. More specifically, students need to construct ways 
to organize their images of varying quantities so that they can hold two quantities in mind as they 
imagine both quantities to change. I hypothesize that if students hold both quantities in mind then 
they have something new to represent in a graph – namely the coordination of two quantities. 
Teaching experiments with Ali and Bryan (see Frank, 2017) suggest that conceptualizing a point 
as a correspondence point, imagining a graph being made of Tinker Bell’s pixie dust, and 
imagining the phenomenon happening in little chunks (e.g., taking baby steps) might support 
students in coordinating their images of varying quantities3 and re-presenting this coordination in 
a graph .  
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3 Correspondence point didactic object from Thompson, Hatfield, Yoon, Joshua, and Byerley (in 
press) and Tinker Bell didactic object from Thompson (2013) 
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