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In this paper, we revisit Hazzan’s (1999) fundamental work on reducing abstraction in abstract 
algebra tasks. As we analyzed hundreds of students’ activity related to abstract algebra tasks, we 
identified many ways students reduced abstraction that did not align with the original 
framework. We leverage additional theories of abstraction to expand and refine Hazzan’s 
framework to reflect new aspects of familiarity, contextualization, complexity and connectedness, 
and formality. For each of the new categorizations, we provide illustrations of students engaged 
in the relevant reduction of abstraction. We conclude with consideration to how the expanded 
framework may highlight productive types of abstraction reduction. 
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It is well-documented that abstract algebra is a challenging course for students (Dubinsky, 
Dautermann, Leron, & Zazkis, 1994; Leron, Hazzan, & Zazkis, 1995; Weber & Larsen, 2008). 
For many students, this is the first time they engage with mathematical objects that are brought 
into existence via formal definitions. These stipulated concepts are general, complex, and often 
unfamiliar to students. Hazzan (1999) created the reducing abstraction framework to document 
how students engaged with the generality, complexity, and unfamiliarity of concepts in abstract 
algebra tasks. She leveraged a number of theories of abstraction to categorize various ways 
students reduced abstraction when engaging these tasks. This work is foundational and remains 
one of the more nuanced treatments of student activity in abstract algebra.  

In our recent work exploring hundreds of students responses to abstract algebra tasks 
(Melhuish, 2015), we similarly observed students reducing abstraction. However, we identified a 
number of ways students reduced abstraction beyond the classifications in Hazzan’s (1999) 
work. In this paper, we synthesize additional theories of abstraction to expand Hazzan’s 
framework in order to better reflect the nuances and variety of approaches found in our students’ 
activity. We share our expansions and provide illustrations of students engaged in reducing 
abstraction in both productive and unprodctive ways. 
 

Theories of Abstraction in Mathematics Education 
In the field of mathematics education, we have many treatments of the abstraction construct 

stemming from Piaget’s comprehensive work to von Glasersfeld’s constructivism and 
Freudenthal’s Realistic Mathematics Education. As Piaget noted (1980), “All new knowledge 
presupposes an abstraction...” (p. 89). However, what scholars mean by an abstract concept, and 
what we mean by abstraction varies according to a given theory of learning. Hazzan (1999) 
originally identified three treatments of abstraction: relationship between the object of thought 
and the thinking person, process-object duality, and complexity of concept of thought. We see 
these three categorizations as essential, but not exhaustive for exploring student task engagement 
in the setting of abstract algebra. We discuss several theories of abstraction that ultimately 
inform our expanded framework.  

Before we begin the discussion, we acknowledge an important dimension along which 
theories of abstraction differ: activity-based versus cognitive. In our overview, we condense 
features of the theories with little attention to whether the theory was meant to describe cognition 



or activity. Rather, our purpose is to identify the means through which abstraction is posited to 
occur.  

 
Abstracting via Apprehending Properties 

A number of abstraction theories focus on students apprehending properties from a set of 
known objects. Piaget’s (2013) theory of empirical abstraction provides the foundation of much 
of this work. For empirical abstraction, properties are observed through empirical investigation. 
If you view a set of white objects, you can abstract the idea of whiteness. Skemp (1986) further 
expanded this theory explaining, “Abstracting is an activity by which we become aware of 
similarities ... among our experiences. Classifying means collecting together our experiences on 
the basis of these similarities” (p. 21) Skemp presented a two-part process of recognizing 
similarity and then creating a class of object based on similarities. Scheiner (2016) built on this 
idea further by introducing structural abstraction. Rather than purely empirical (abstracting from 
empirical objects), abstraction can occur through exploration of mental objects. This exploration 
may be focused on similarity, but may also occur through focusing on complementary aspects. In 
each of these theories, a concept is abstracted through collecting a relevant set of properties.   
 
Abstracting via Building Connections and Complexity 

An alternative lens for abstraction focuses on building connections between or within 
concepts. Connections play a fundamental role in a number of abstraction theories such as within 
Dubinksy and McDonald’s (2001) schemas or Hoyles, Noss, and Kent’s (2004) webbing.  
Abstraction occurs through the correct coordination of various concepts. This may be internal 
such as in Dayvdov’s (1990) theory where understanding a concept involves unity amongst its 
connected parts. Alternately, an assembly metaphor (e.g. Ohlsson and Lehtinen, 1997) may 
underlie a connection focused abstraction theory.  Ohlsson and Lehtinen explained that new 
knowledge structures are developed via assembling “previously acquired ideas” (p. 42). In this 
sense, a concept is abstracted via coordination of various properties and/or concepts that 
compose the finalized object. 
 
Abstracting via Decontextualization 

Decontextualization theories tend to focus on moving from a familiar context to building 
something abstract that is independent of the context. This type of abstracting can be found in the 
school of Realistic Mathematics Education and Hershkowitz, Schwarz, and Dreyfus’ (2001) 
abstraction in context. These theories distinguish horizontal mathematizing, “the process of 
describing a context problem in mathematical terms – to be able to solve it with mathematical 
means” (Gravemeijer & Doorman, 1999, p.117), from vertical mathematizing, where this activity 
is mathematized through abstracting, generalizing and formalizing (Rasmussen et al., 2005). This 
type of abstraction occurs when model of a specific context or problem (one which is 
mathematically real to a student) transition to a model for additional mathematics that does not 
rely on the underlying context. These task-based theories align themselves with two views of 
abstraction related to familiarity. First, a concept can be thought of as abstract if it has moved 
from a model of a familiar situation to a model for other contexts. Alternately, a concept within a 
context is more or less abstract depending on how mathematical real it is to an individual. This is 
roughly equivalent to a student’s familiarity with it (cf. Wilensky, 1991).     
  
 



Abstracting via Delineation and Refinement 
While many theories posit that concepts move from concrete to abstract, Dayvdov (1990) 

introduced an alternative view where the abstraction process concretizes an abstract kernel of an 
idea.  His theory posits that an object begins as an undeveloped (potentially inconsistent) basic 
form. This form can be analyzed, and refined until a coherent model is developed. This theory of 
abstraction can be thought of as moving from a vague idea of concept to a concretely delineated 
defined concept. The delineation may be more fundamental in advanced mathematics where 
stipulated definitions form the basis of mathematical structures. Zandieh and Rasmussen (2010) 
provide insight into this sort of refinement through illustration of students’ concept images and 
definitions of triangle developing. In some senses, this type of abstraction connects to pseudo-
empirical abstraction (Piaget, 2013) where abstraction can occur via interacting with an object. 
In Dayvdov’s sense, an object may be a mathematical model rather than a purely empirical “real-
world” object. Tall and Pinto (2002) provide such an example where a student moves from a 
generic visual representation of limit to build to the formal definition. From this theoretical lens, 
a concept is abstracted when a stipulated definition is abstracted from imprecise models. 
 
Abstracting via Encapsulating Processes 

The final treatment of abstraction is that of process-object duality. This type of abstraction 
has been explicated through a number of theories including Dubinsky and McDonald’s (2001) 
Action-Process-Object-Schema theory, Sfard’s (1991) object reification, and Gray and Tall’s 
(1994) procept theory. Each of these theories operationalizes Piaget’s work in the context of 
various mathematics settings. The underlying feature is the encapsulation of or reification of 
some particular process into an object. These theories break into three stages: a process that 
requires individual steps, a holistic view of the process, and a view of the process as an object 
itself to be used in other processes. For example, Asiala et al. (1997) illustrated this duality in 
abstract algebra where students may rely on the canonical procedure for creating a coset rather 
than or in conjunction with treating a coset as an object itself. In this sense, a concept is 
abstracted when it is no longer treated exclusively as a process, but rather can be used as an 
object for other processes.   

In synthesizing the preceding theories, abstraction has a dual nature: it can be seen both as a 
cognitive activity and as the concept resulting from that activity. When viewed as a cognitive 
activity, abstraction is a process that transforms a concept via given means. The resulting 
concept is said to be an abstraction (or “abstracted”). In what follows, we use the term “level of 
abstraction” to refer to the means by which the student carries out the abstracting activity. Thus, 
in reducing abstraction, an individual is acting cognitively via specific means in order to reduce 
for herself the level of perceived abstraction. Reduction is tied to the specific context in which 
the student is working. The Expanded Reducing Abstraction framework in Table 1 presents the 
levels of abstraction and operationalizes the means by which the activity is carried out. 

 
Reducing Abstraction: An Expanded Framework 

We leverage the prior discussion of abstraction theories to introduce an expanded 
classification of reducing abstraction. As in Hazzan’s (1999) work, we do not claim that these 
ways of reducing abstraction are mutually exclusive or exhaustive. Rather, we introduce the 
framework as a tool for making sense of the many ways students engage with tasks containing 
abstract concepts. We illustrate categorization with data from several of our studies (Melhuish 
2015; Melhuish & Fagan, 2017), Hazzan’s original paper, and outside literature.  
 



Table 1. Expanded Reducing Abstraction Framework 

Abstraction Level as: Operationalization of Reducing Abstraction 

Relationship between the 
object of thought and the 
thinking person  

• Moving from an unfamiliar concept/context to a familiar one1  
• Using familiar concept to bridge between unfamiliar concepts 
• Moving from decontextualized to familiar context  

Reflection on the 
process-object duality 

• Moving from an object to a algorithm 
• Moving from an object to a process1 

Complexity of concept of 
thought 

• Moving from a set to an element1 
• Moving from cohesive concept to disjoint parts 
• Moving from connected concepts to isolated concepts 

Precision/formality of 
concept of thought 

• Moving from formal definition to informal definition 
• Moving from definition to metaphor 
• Moving from formal definition to generic model 

1 Aligned with Hazzan’s (1999) operationalization. 

Relationship between the object of thought and the thinking person  
Hazzan (1999) operationalized reducing abstraction in this sense via moving from an 

unfamiliar to familiar situation. She introduced an example where students engaged in tasks 
related to modular arithmetic groups and instead used properties and knowledge of familiar 
groups like the real numbers. This type of reducing abstraction occurs not when a particular 
concept is more general, but rather when it is new and unfamiliar. In many ways, a specific 
modular arithmetic group is just as concrete as a group like the reals. In our work, we similarly 
found students reverting to properties of familiar groups such as desiring identities to be either 
“0” or “1” regardless of binary operation. 

We argue that Hazzan’s (1999) second example, misapplying Lagrange’s theorem to 
determine that Z3 is a subgroup of Z6 constitutes a parallel, but different way of reducing 
abstraction. In this application, a student does not replace an unfamiliar concept with a familiar 
concept, but rather uses a familiar concept (divisibility) as a bridge between the unfamiliar 
setting and an unfamiliar concept (Lagrange’s Theorem). We found many students engaging in 
this type of abstraction reduction. For example, when students identified the size of cosets- rather 
than attend to the order of the subgroup used to build the coset- they provided the index as their 
answer. This illustrates a lack of familiarity with cosets bridged via a familiar concept divisibility 
to an unfamiliar concept, index. 

In our third category, a student moves from unfamiliar (general) to familiar (specific) 
contexts. We saw students do this in a number of places in our data. For example, when students 
were asked to determine if the equation (ab)2=a2b2 holds in groups generally, students returned 
to a number of familiar contexts including integers under multiplication (a misleading reduction 
of abstraction) or permutation groups (a productive reduction of abstraction). We see this activity 
as related to Gravemeijer and Doorman’s (1999) referential activity in Realistic Mathematics 
Education designed tasks. During the process of reinvention of mathematical ideas, students 
often reduce abstraction and return to a specific context to productively explore ideas. (For an 



example, see Larsen and Lockwood’s (2013) teacher-student exchange about left and right coset 
equivalence (p. 14).)  

 
Process-Object Duality 

As in the previous category, we subdivide Hazzan’s (1999) process-object duality category. 
Process-object theories often distinguish between holistic processes and step-by-step actions 
(Tall et al., 1999). The use of “I” statements as highlighted by Hazzan (1999) may reflect 
algorithmic approaches where procedures are carried out step-by-step.  Hazzan presented such an 
example where a student makes sense of the definition of a quotient group by explaining the 
canonical procedure for creating a coset using such language as “each one [element] by itself” (p. 
81) as she walks through the relevant product creation.         

We see this individual algorithm or action as one way to reduce abstraction. However, 
students may also go from an object and de-encapsulate (productively) to a process or 
inappropriate replace an object with a process (unproductive). For example, when a student was 
asked to find the kernel of a specific mapping, they responded, “The kernel of the 
homomorphism is what is inputted in Z [domain] to output the identity in H [codomain].” The 
student continued to treat the homomorphism holistically and identify the correct kernel set. This 
was a productive reduction in abstraction as de-encapsulating the kernel allowed the student to 
leverage the holistic process to correctly identify the kernel. In contrast, many students reduced 
abstraction to an action and provided incomplete kernel sets often identifying only one specific 
element that mapped to the identity of the codomain. In general, this type of abstraction 
reduction captures object-process duality with varying degrees of sophistication. 

 
Complexity of the concept of thought 

Hazzan (1999) provided one conception of abstraction within this category: using elements 
rather than a general set. We found Hazzan’s (1999) classification useful and observed students 
engaging in similar reductions of abstraction. For example, consistent with Asiala et al. (1997), 
many students conflated the equivalence of left and right cosets with the commutativity of their 
individual elements.  However, we also identified other ways students reduced abstraction by 
reducing complexity. We expand this category to include:  Moving from cohesive concept to 
disjoint parts and Moving from connected concepts to isolated concepts. An example of the 
former category can be found in Melhuish and Fagan (2017). Students’ engaging with tasks 
around binary operations reduced abstraction via attending to only one property. When asked if a 
given function (such as x3) is a binary operation, majority of students focused on one property: 
closure. Reducing abstraction to this property is productive in traditional tasks where there are 
two inputs, however unproductive in a setting where not all functions are binary. This example 
illustrates that a student may reduce abstraction by attending to one aspect or property of a 
concept rather than the totality. The consequences of the reduction may be unintentional, 
especially if the students’ concept image does not contain all relevant properties.  

Alternately, a reduction of abstraction can occur when students lose relationships between 
other concepts that connect to the meaning of a concept at-hand. For example, when students 
were asked to find the inverse of c in the Cayley table below (table 2), many students identified 
c, treating a as the implicit identity element. Note that the identity element is not in the first row 
and column. When asked to explain their thinking on this task, such students did not attend to the 
role identity played in the concept of inverses. Rather, students explained inverse as, “[i]t's the 
opposite element of an element.”  In this way, their abstraction level is lowered via loss of an 



important connection to another concept: identity. We see these additional complexity theories as 
related to abstraction theories of properties and theories of connectedness. Students may reduce 
abstraction via attending to only a subset of properties or alternately losing important 
connections to additional concepts. 

 
Table 2. Cayley Table defined on set {a,b,c} 
 a b c 
a c a b 
b a b c 
c b c a 

 
Degree of precision/formality 

This category was not from Hazzan’s (1999) framework; rather this additional category 
emerged to reflect theories of abstraction such as Davydov (1990) where abstraction level 
reflects the transition of mathematical object from informal/imprecise and to delineated and 
concrete. This process is sometimes equated to formalization in advanced mathematics. We 
identified three literature-based ways abstraction can be reduced from this theoretical lens. 

Students may replace a formal definition with an informal definition. Lajoie and Mura (2000) 
identified this type of abstraction reduction when students engaged in tasks related to cyclic 
groups. We similarly found students leveraged an informal definition of cyclic when tasked with 
determining if particular groups were cyclic. Their definitions often relied on a generating action: 
“Start with the unit element and keep piling that onto itself” until a group is created.  Reducing 
abstraction to this informal definition will be successful for finite group, but become problematic 
for the infinite cyclic group. See Melhuish (2018) for a discussion of how such an informal 
definition may be supportive for understanding the convention of powers in group theory.   

Students may also use metaphors as a way to reduce abreaction. Rather than deal with a 
concept mathematically, they may leverage a metaphor such as an input-output machine for 
function (e.g. Zandieh, Ellis, & Rasmussen 2017). When identifying a specific homomorphism’s 
kernel, a student used such a metaphor: “All the elements in the integers that would fit through 
the function and go to the identity on the codomain. Then start plugging things into that 
function.” The function is treated as something that elements are fitted through. This particular 
reduction in abstraction was productive when attempting to identify the kernel of a given map. 

A third variant is through creation of visual representations. As noted by Sfard (1991), 
abstraction can be reduced through returning to a visual image which is “more tangible, and 
encourag[ing] treating them almost as if they were material entities” (p. 6). In our work, we 
found this type of reduction of abstraction to be infrequent, but often productive when it 
occurred. One example can be seen in Figure 1.  This student was asked to determine if cosets 
can always be formed from a given subgroup H and if so, what their size would be. The student 
drew a generic group partitioned into cosets to reason that this can always occur and the size 
would be the same as H. The group G was represented as a visual that can be reasoned from. 
This type of abstraction reduction aligns with Pinto and Tall’s (2002) generic abstraction. 

  



  
 

Figure 1. A student’s visual representation of group G with cosets built using subgroup H 

Discussion 
In this paper, we sought to expand Hazzan’s (1999) reducing abstraction framework by 

leveraging a number of abstraction theories. As Hazzan acknowledged, this type of framework 
cannot be exhaustive, nor mutually exclusive. In fact, the theories of abstraction which inform 
such an analysis often have overlap themselves. In this sense, we see this framework as a 
productive lens for analyzing student activity, but not a lens meant to categorize students. As 
Hazzan did originally, we made our theoretical expansions based on data from abstract algebra 
tasks. This subject area is populated with concepts that are abstract across many characterizations 
of abstraction (decontextualized, objects, complex, and stipulated.)  

In addition to expanding the framework, we also wished to further highlight that reducing 
abstraction can be productive. Hazzan (1999) cautioned, “The term ‘reducing abstraction’ should 
not be conceived as a mental process which necessarily results in misconceptions or 
mathematical errors” (p. 75).  However, Hazzan illustrated student activity that was either 
erroneous or neutral in problem-solving situations. While this if often the case, we also shared a 
number of examples of students working productively via reducing abstraction. In fact, we argue 
the ability to appropriately lower abstraction reflects a high level understanding. For example, to 
move from a formal representation to an accurate generic model reflects an advanced re-
construction of a formal idea (von Glasersfeld, 1991). Similarly, Dubinsky and McDonald 
(2001) identified the ability to de-encapsulate from object to process as an essential feature of 
object-level conceptions. In this sense, we see parsing reduction of abstraction as more than just 
a tool for analyzing the cause of inaccurate student responses.  

 Such a framework can also provide insight into how we meet students where they are at in 
order to promote productive reduction of abstraction. There is power in being able to reduce 
abstraction in problem-solving (or proving) situations. Weber and Alcock (2004) presented 
contrasting cases where students (and graduate students) may produce proofs via working in an 
entirely formal system or through semantic explorations. In some sense, moving out of the 
formal system reduces abstraction level. It is this reduction that allowed successful provers in 
their study to gain insight into proofs. In Larsen and Lockwood (2013), students moved between 
decontextualized and contextualized situations to productively explore conjectures and 
ultimately reinvent mathematics. The question is not, how do we prevent students from reducing 
abstraction, but rather how do we promote students in reducing abstraction in productive ways? 
Through better understanding of reducing abstraction, we may ultimately aid in supporting 
students as they navigate abstract concepts in advanced mathematics.  
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