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The Evaluating the Quality of Instruction in Post-secondary Mathematics (EQIPM) is a video 
coding instrument that provides indicators of the quality of instruction in community college 
algebra lessons. The instrument is based on two existing instruments that assess the quality of 
instruction in K-12 settings—the Mathematical Quality of Instruction (MQI) instrument (Hill, 
2014) and the Quality of Instructional Practices in Algebra (QIPA) instrument (Litke, 2015). 
EQIPM addresses three dimensions focused on quality of instruction via 17 codes. In this paper, 
we describe two codes: Instructors Making Sense of Procedures from the Quality of Instructor-
Content Interaction dimension, and the Mathematical Errors and Imprecisions in Content or 
Language, a code spanning all three dimensions. The purpose of the paper is to illustrate what 
we have learned from these codes and the new instrument to advance our understanding of post-
secondary mathematics instruction. 
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Various reports have established an indirect connection between students leaving science, 
technology, mathematics, and engineering (STEM) majors because of their poor experiences in 
their STEM classrooms (Herzig, 2004; Rasmussen & Ellis, 2013). Interestingly, however, most 
of these reports are based on participants’ descriptions of their experiences in the classroom, 
rather than on evidence collected from large scale observations of classroom teaching (Seymour 
& Hewitt, 1997). When such observations have been made, they usually focus on superficial 
aspects of the interaction in the classroom (e.g., how many questions instructors ask, how many 
students participate, or who is called to respond, Mesa, 2010) or their organization (e.g., time 
devoted to problems on the board, or lecturing, Hora & Ferrare, 2013; Mesa, Celis, & Lande, 
2014). Undeniably, these are important aspects of instruction, yet these elements are insufficient 
to provide a characterization of such complex activity as instruction in classrooms.  

A key concern in post-secondary mathematics education is the lack of teacher training that 
mathematics instructors received in their graduate education (Ellis, 2015; Grubb, 1999).  We 
argue that the lack of a reliable and valid method to fully describe how instruction occurs hinders 
our understanding of the complexity of instructors’ work in post-secondary settings and therefore 
limits the richness of professional development opportunities focused on the faculty-student-
content interactions (Bryk, Gomez, Grunow, & LeMahieu, 2015). As part of a larger project that 
investigates the connection between the quality of instruction and student learning in community 
college algebra, we have developed an instrument, EQIPM, that seeks to characterize instruction. 
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In this paper, we present the current form of the instrument and describe two codes that show 
promising findings from our pilot data. 

Theoretical Perspective 
We assume that teaching and learning are phenomena that occur among people enacting 

different roles—those of instructor or student—aided by resources of different types (e.g., 
classroom environment, technology, knowledge) and constrained by specific institutional 
requirements (e.g., covering preset mathematical content, having periods of 50 minutes, see 
Chazan, Herbst, & Clark, 2016; Cohen, Raudenbush, & Ball, 2003). We focus on instruction, 
one of many activities that can be encompassed within teaching (Chazan et al., 2016), and define 
instruction as the interactions that occur between instructors and students in concert with the 
mathematical content (Cohen et al., 2003). Such interaction is influenced by the environment in 
which it happens and it changes over time. Empirical evidence from K-5 classrooms indicates 
that ambitious instruction is positively correlated with student performance on standardized tests 
(Hill, Rowan, & Ball, 2005). The definition of instruction requires attention to the discipline and 
is fundamental in understanding mathematics teaching practice. Therefore, we assume, first, that 
the experiences of instructors and students while interacting with mathematical content have a 
significant impact on what students are ultimately able to demonstrate in terms of knowledge and 
understanding, and second, that it is possible to identify different levels of quality of the 
instruction that is enacted in mathematics classrooms. 

Methods 
In the pilot phase of the larger research study, we video-recorded 15 lessons in introductory, 

intermediate, and college algebra classrooms from three different community colleges in three 
different states during the Fall 2016 semester. The lessons ranged in duration between 45 and 
120 minutes, and were taught by six different instructors (two part-time and four full-time). The 
lessons covered one of three topics: linear equations/functions, rational equations/functions, or 
exponential equations/functions. These topics were chosen because they offer us opportunities to 
observe instruction on key mathematical concepts (e.g., transformations of functions; algebra of 
functions) and to attend to key ways of thinking about equations and functions (e.g., preservation 
of solutions after transformations; covariational reasoning), which are foundational algebraic 
ideas that support more advanced mathematical understanding. The development of EQIPM was 
similar to the process used by Hill and colleagues (2008) and by Litke (2015). Their instruments 
describe and qualify instructional practices from video-recorded lessons deemed representative 
by rating all individual 7.5-minute segments.  

EQIPM evolved through various iterations of segment and lesson coding and discussion with 
a subset of segments. In the final phase of development, all 151 segments in the data corpus were 
double-coded using an earlier version of EQIPM. Each code received a score ranging from 1 to 
5. The team of 10 researchers, all co-authors on this paper, worked in pairs to independently 
code three lessons; for each of their lessons, each pair held calibration meetings to discuss codes 
with a discrepancy in ratings greater than one point.  

The instrument consists of three dimensions: (1) Quality of Instructor-Student interaction, (2) 
Quality of Instructor-Content Interaction, and (3) Quality of Student-Content Interaction; two 
cross-cutting codes (Mathematical Explanations and Mathematical Errors and Imprecisions in 
Content or Language); and three additional codes that help characterize the type of work done on 
each segment in a lesson (i.e., Mathematics is a focus of the segment, Procedure taught in the 
segment, and Modes of instruction, see Figure 1). In this paper, we describe one code from the 



 

Quality of Instructor-Content Interaction dimension (Instructors Making Sense of Procedures) 
and one cross-cutting code (Mathematical Errors and Imprecisions in Content or Language) to 
provide the reader with a sense of how these two codes are useful in characterizing key practices 
in the community college algebra classrooms that we have observed. 

 

 
Figure 1: Dimensions and codes for the EQIPM instrument.  

Preliminary Findings 
Instructors Making Sense of Procedures was a code originally from the QIPA instrument, 

which defined a procedure as “instructions for completing a mathematical algorithm or task” 
(Litke, 2015, p. 160). With this code, we sought to identify ways in which instructors used 
mathematical relationships or properties to motivate a particular procedure. Such work includes 
activities that attend to, for example, the type of solution generated by a procedure and its 
interpretation or to the conditions of the problem that may suggest what procedure to apply and 
where in the process to use it. This work also includes activities that attend to the symbols used 
in mathematical expressions and equations, as well as to the structure of an algebraic expression 
and how it is transformed by each step in a mathematical procedure. Thus, in general, this code 
seeks to capture all mathematical work that instructors do to make salient mathematical 
properties, relationships, and connections embedded in a particular mathematical procedure. 
Making sense of procedures helps students to understand the underlying logic of the procedure of 
how to get from one step to the other, not merely reproducing the work from a textbook example. 
We believe that when the instructors make explicit the sense-making behind procedures, then 
their students will have an opportunity to make sense of the mathematics as well so that they can 
engage more substantively with the mathematics. 

In order to make an assessment of the evidence found in the videos, each segment was rated 
on a scale of 1 to 5 depending on whether the instructor did not engage in sense-making while 
teaching a procedure (a rating of 1) or when the instructor consistently engaged in sense-making 
throughout the segment (a rating of 5). A rating of 3 is reserved for cases in which sense-making 
is observed on several occasions in the segment, but they are brief, or for cases in which 
procedures are not the focus of instruction. Ratings of 2 and 4 were used when the evidence was 
not sufficient for a 3 or a 5. Out of segments in which a procedure was taught, we only identified 



 

one in which no sense-making was present; 59 segments (43%) had a rating of 3, and 55 
segments (39%) had a rating of 4 or 5 (30% and 9%, respectively). Thus, in these lessons, we 
were able to provide evidence for all of the ratings, which suggests that the instrument allows for 
differentiation of the role of sense-making in the classroom. In most cases, we can say that 
instructors were making a genuine effort of assisting students in making sense of the procedures 
taught during the video recorded sessions. 

For example, in a lesson on linear functions, instructor 0613 presented a word problem in 
which students are asked to model the value of a copy machine, v, as a function of time, x. The 
instructor asked students to consider how to write a linear function v as a function of x. Students 
contributed three answers: f(x), f(v), and v(x). The instructor reasoned through all three responses 
using the information in the problem to make sense of the appropriate way to write the function 
as v(x) (0613_L1, 2016, 26:22). Later in the segment, the instructor asked, “What does the value 
of $120,000 mean in this problem? What does a slope of negative 12,000 mean in this problem?” 
(0613_L1, 2016, 29:00). The subsequent conversation detailed the meaning of the values of the 
y-intercept and slope for this specific context. This segment received a rating of 3 because within 
the segment, the instructor made sense of the procedure more than briefly, but sense-making was 
not the focus of the instruction on the procedure (how to write an equation to model a situation 
given in a problem). Instructor 0112 demonstrated sense-making that was rated as a 5, when 
working with a growth problem modeled by y = 3(2)x. He asked students to think about the 
meaning of the general equation y = abx with a concrete example that used paper folding to 
demonstrate the meaning of 2x, where x was the number of times a piece of paper was folded by 
half and y the size of the stack of papers generated by the fold: One fold created a stack of 2, two 
folds created a stack of 4, three folds created a stack of 8, and so on (0112_L1, 2016, 30:00). 
This segment was rated 5 because, sense-making was the focus of the segment and it saturated 
the segment.   

Mathematical Errors and Imprecisions in Content or Language was a code originally from 
the MQI. The code is intended to capture events in the segment that are mathematically incorrect 
or that have problematic uses of mathematical ideas, language, or notation. This code applies to 
the work and utterances of the instructor. Errors made by students are ignored except when the 
instructor does not correct them. This code also captures cases in which problems are solved 
incorrectly, when definitions are incorrect, or when the instructors do not use or forget to 
mention a key condition in a definition. Finally, we apply this code when instructors use 
imprecise or colloquial mathematical language. Our interest in this code stems from the 
realization that in some of the lessons we observed, instructors used language that was not 
mathematically correct to convey ideas, and whereas such uses were appropriate for the lesson—
their meaning had been negotiated within the classroom—the continued use of that language 
could put students at a disadvantage because they would not be gaining proficiency in using 
correct mathematical language. A rating of 1 indicates that no errors or imprecisions were 
observed, a desirable situation, whereas a rating of 5 indicates major content, notation, or 
language errors were made throughout the segment, an undesirable situation. A rating of 3 is 
reserved for some errors that obscure the mathematical meaning for part of the segment. Out of 
138 segments in which a procedure was taught, we only identified one segment with a rating of 5 
signaling that major errors were seen, and 45 segments (33%) in which no errors were observed. 
Fifty-eight segments (42%) had minor imprecisions (rating of 2, e.g., using “bottom” for 
denominator) and 34 segments (24%) had a rating of 3 or 4 (23% and 1%, respectively). Given 
that about one fourth of the segments were rated with a 3 or more in this sample, we note that the 



 

instrument may suggest areas for professional development that relate to strengthening the rigor 
in using accurate mathematical language, relationships, and notations. For example, in a lesson 
on rational equations, instructor 0112 used a graphing calculator to graph 𝑦 = #$%

#&'(#$)
. While 

identifying the asymptotes using graphical and symbolic representations of the function, the 
instructor stated that the zeros of the denominator “equal” the vertical asymptotes. We 
considered this statement as an error in language because that precise statement would require 
writing a linear equation, as well as an error in content because it does not recognize that there is 
a removable discontinuity. Later in the segment, the instructor asked the students: “If I let x be 
equal to 2, with what do I end up at the bottom?” (0112_R1, 2016, 57:12). We considered the 
replacement of precise mathematical terms (e.g., denominator) with an everyday, colloquial term 
(e.g., bottom) an imprecision in language. However, the segment was rated as 2 in this code 
because the imprecise language did not hinder the procedure of identifying the asymptotes. 

Questions for the Audience 
The current version of the EQIPM instrument seeks to gather evidence on the quality of the 

instructor-content, instructor-student, and student-content interactions, thus mirroring the 
framing on instruction of our work. To advance our work, we have the following questions: 
• Are there features of quality instruction that are not being captured in this version of the 

EQIPM instrument? A preliminary factor analysis with the pilot data points to a three-factor 
structure (with mathematical errors and imprecision being by itself). During the presentation, 
we will share the instrument and the current definitions, and we will illustrate how some of 
the codes fit in this factor analysis. 

• The labels for the main categories of codes, mirror our definition of instruction. Are there 
other possible structures or organizations of the codes? What theoretical framing about 
quality of instruction could be used for such reorganization? 

• Which additional video coding protocols could be leveraged to make the EQIPM instrument 
more robust? 
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