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Calculus serves many students from myriad fields of study. Investigations into the ways students 
from these fields of study reason about calculus concepts are vital, yet lacking (Rasmussen, 
Marrongelle, & Borba, 2014). The biological and life sciences make up 30% of traditional 
Calculus I students (Bressoud, 2015) and yet we know very little about how these students utilize 
context as they reason about calculus ideas like the definite integral. In this study, task-based 
interviews were conducted with 12 undergraduate students majoring in the biological and life 
sciences. Data were analyzed via open coding from a constructivist grounded theory approach 
(Charmaz, 2000) and a new analytic tool, local theory diagrams was developed. Results indicate 
problem context influenced students’ assessment of the viability of their solution strategies as 
well as enabled them to reason through apparent contradictions in their work.  
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Framing the Study 
Calculus is at the heart of a great many disciplines. Biology, computer science, economics, 

engineering, and physics are just a few of the undergraduate programs that require at least one 
semester of calculus. Enrollment in calculus courses at the secondary and post-secondary levels 
continues to rise (Bressoud, Carlson, Mesa, & Rasmussen, 2013; Kaput, 1997) and so 
understanding how students reason about calculus concepts is vital to better serve this growing 
community. Since the 1980s, research in calculus teaching and learning has blossomed into a 
field unto itself where researchers have explored several areas including the cognitive 
development of introductory calculus concepts in students and the potential for new digital tools 
to change calculus instruction (see Rasmussen, Marrongelle, & Borba, 2014 for a review).  

Recent studies have highlighted the service nature of introductory calculus at the 
undergraduate level, since “very few students in Calculus I - between 1% and 3% of those 
enrolled in this course - intend to major in mathematics” (Bressoud et al., 2013, p. 691). Most 
students in these classes are majoring in other fields, what are often called the client disciplines 
of calculus. One popular client discipline of calculus is the biological and life sciences. 
Researchers have identified that 30% of the students in traditional Calculus I courses intend for 
careers in the biological and life sciences (Bressoud, 2015). However, the traditional Calculus I 
course “is designed to prepare students for the study of engineering or the mathematical or 
physical sciences” (Bressoud et al., 2013, p. 691). Which means a great many students in 
calculus are not seeing many contextually-based tasks catered to their field of study. 

This study specifically addresses students’ solution strategies on tasks involving the definite 
integral and accumulation primarily because integration and accumulation serve an important 
role in differential equations, which are used extensively in modeling within the biological and 
life sciences. Researchers have investigated student conceptions of the definite integral and have 
found that calculus students are good at using the standard antiderivative techniques taught in 
introductory calculus (Ferrini-Mundy & Graham, 1994; Grundmeier, Hansen, & Sousa, 2006; 
Mahir, 2009; Orton, 1983) and that while area under the curve dominates instruction of the 
definite integral in calculus, the multiplicative structure of the Riemann sum is a more powerful 



way to conceive of the definite integral as seen in both mathematics and physics education 
research (e.g. Jones, 2015a; Sealey, 2014). Unfortunately, researchers have seen that students 
struggle to make these meaningful connections between rate of change and accumulation in 
definite integral tasks (Bajrachara & Thompson, 2014; Thompson, 1994). Furthermore, 
researchers have found that when solving physics-based tasks, students’ problem-solving 
strategies differ in relation to the context presented (e.g., Bajracharya & Thompson, 2014; Jones, 
2015b; Sealey, 2014), and that some of these strategies are productive in a physics context when 
compared to a decontextualized mathematics context (Bajracharya, Wemyss, & Thompson, 
2012; Jones, 2015a). 

To better serve students from the myriad client disciplines of calculus, we must understand 
how students solve calculus tasks set in contexts relevant to those fields and whether those 
contexts play a significant role in their mathematical reasoning. Rasmussen et al. (2014) end 
their review of the state of research on calculus teaching and learning with a call for “research 
that closely examines the ways in which calculus ideas are leveraged in the client disciplines, 
how these ideas are conceptualized and represented in the client disciplines, and what these 
insights might mean for calculus instruction” (p. 513). The current study was designed to address 
this gap in the literature. My specific research question is: What role does context play in how 
undergraduate students majoring in the biological and life sciences solve calculus tasks involving 
accumulation? 

Theoretical Perspective 
The perspective of learning that influenced the construction and analysis of this study is 

constructivism, specifically a view of knowledge as cognitive adaptation. In a constructivist 
theory of learning, the fundamental assumption is that learners build up knowledge for 
themselves instead of being imbued with knowledge by those around them. In other words, the 
learner must actively participate in the development and organization of the cognitive structures 
making up their understanding of the world (von Glasersfeld, 1982). To explore an individual’s 
understanding, one must consider the following three factors: “the individual’s current state of 
development, social and cultural influences of a tribe (group), and environmental/physical 
factors in relation to the task at hand” (Confrey & Kazak, 2006, p. 317). This perspective on 
learning, while maintaining focus on the individual learner, acknowledges that social and 
environmental factors must necessarily play a role in that learning. For this study, such a 
perspective provides the foundation for analyzing individual’s approaches to calculus tasks while 
framing those approaches within the influence of those individual’s backgrounds (in this case, as 
undergraduate students majoring in the biological and life sciences) and the interview setting 
itself.  

One aspect of constructivism that played a key role in the data analysis in this study is a view 
of knowledge as an adaptive function. Ernst von Glasersfeld, in his interpretation and extension 
of the work of Jean Piaget, stresses the connection between the mechanisms of evolution by 
natural selection and how individuals learn. von Glasersfeld (1982) claims “knowledge for 
Piaget is never (and can never be) a ‘representation’ of the real world. Instead it is the collection 
of conceptual structures that turn out to be adapted, or as I would say, viable within the knowing 
subject’s range of experiences” (p. 4). Viability is the crucial idea. Just as with the evolution of 
an organism in an ecosystem, what students learn is not driven by matching some objectively 
true reality, but what the student, within their personal “ecosystem,” finds viable. Therefore, for 
learning, as in evolution, there is an emphasis placed on stability and equilibrium. von 
Glasersfeld states that “in the sphere of cognition, though indirectly linked to survival, 



equilibrium refers to a state in which an epistemic agent's cognitive structures have yielded and 
continue to yield expected results, without bringing to the surface conceptual conflicts or 
contradictions (p. 5). This is the heart of the concept of viability in constructivism, that learning 
is the development of stable cognitive structures and forms the foundation for the analytical tool 
developed herein, local theory diagrams, which were designed to highlight this process of 
students assessing the viability of their mental schemes. 

Methods 
To answer the research question posed, qualitative methods were employed. I utilized task-

based interviews with twelve undergraduate students majoring in the biological and life sciences 
at a large public university in the Southeastern United States that I will call South State 
University (SSU) in the spring of 2016. Task-based interviews allowed me to investigate 
students reasoning about calculus tasks involving accumulation and to probe their understanding 
as they solved the problems. Data were open-coded via methods from constructivist grounded 
theory (Charmaz, 2000) which led to the development of a new analytic tool, local theory 
diagrams.  

Participants 
The population was all undergraduate students majoring in the biological and life sciences at 

South State University (SSU). SSU is a large, public university serving approximately 24,000 
undergraduates. The students at SSU are of high academic caliber; half of all incoming freshman 
rank in the top ten percent of their high school class with a GPA of at least 3.75. SSU is 
considered “very selective” with 46% of applications admitted per year (The College Board, 
2017). Students majoring in the biological and life sciences at SSU at the time of this study, were 
required to take at least two semesters of calculus, either the calculus sequence for life and 
management sciences or Calculus I and II. 

Participants were solicited by visiting second semester calculus courses specifically designed 
for students studying in the biological and life sciences as well as upper-level courses within the 
biological and life sciences. Twelve students were interviewed, half of which were freshman or 
sophomores while the other half were juniors or seniors. The students were predominately 
female (8 of 12) and Caucasian (11 of 12).   

Interview Protocol 
In this study, I utilized task-based interviews in which students completed five calculus tasks 

concerning accumulation (approximately 50 minutes). In each of the five tasks, the students were 
presented with a rate of change function of some quantity and asked questions about the 
accumulation of said quantity over various periods of time. To answer the research question: 
“What role does context play in how undergraduate students majoring in the biological and life 
sciences solve calculus tasks involving accumulation?”, the contexts for the tasks were chosen to 
be diverse but relevant for the students’ backgrounds. In this session, I will discuss the results of 
two of the tasks, which are reproduced below in Figures 1 and 2.  



 

Figure 1. Interview Task 3 

 

Figure 2. Interview Task 5 

Data Analysis 
Analysis of the interview transcripts followed a constructivist grounded theory approach 

(Charmaz, 2000). Constructivist grounded theory, like other forms of grounded theory (e.g., 
Glaser & Strauss, 1967; Strauss & Corbin, 1990), allows the researcher to explore the data 
without a preconceived framework of what results should emerge from the data. Charmaz notes 
that objectivist grounded theorists “assume that following a systematic set of methods leads them 
to discover reality and to construct a provisionally true, testable, and ultimately verifiable 
‘theory’ of it” (p. 524) and therefore that the data collection and analysis procedures should aim 
to minimize the role of the researcher to be able to make claims about an observer-independent 
reality. For constructivist grounded theory, Charmaz argues, this is not the case. She argues that 
“the research products do not constitute the reality of the respondents’ reality. Rather, each is a 
rendering, one interpretation among multiple interpretations, of a shared or individual reality” 
(Charmaz, 2000, p. 523). Charmaz illustrates this succinctly when she says, “data do not provide 
a window on reality. Rather, the ‘discovered’ reality arises from the interactive process and its 
temporal, cultural, and structural contexts” (p. 523-524). This approach to data analysis fits with 
the theory of learning described earlier, particularly the focus on viability in learning since both 
perspectives reject the assumption that we are uncovering some objectively true reality.  

The open-coding process led to the development of a new analytical tool, local theory 
diagrams, which visually represent a student’s solution strategy and all its mutations for a given 
task. Local theory diagrams showcase the “core” of the student’s current theory concerning the 
given task and its solution (e.g. how to interpret the given rate of change function) and is then 



surrounded by all the hypotheses the student generates based on that assumption and ideas the 
student believes to be true at the time. The local theory diagrams also illustrate how these 
theories shift as the student interacts with the task and assesses whether their current assumptions 
and strategies make sense. In this way, the diagrams show the process of students coming to 
develop more viable theories of the tasks they solve. Examples of the local theory diagrams are 
given in the next section. 

Results 
There were two primary ways the problem context helped shape students’ mathematical 

reasoning. The first was their use of the context partnered with the given information to refine 
their local theories of the task to increase the perceived viability of their strategies. Secondly, 
students would occasionally use the problem context to help explain away apparent 
contradictions within one of their local theories. I will use the results of the open-coding process 
as well as a few examples of the local theory diagrams to illustrate each of these findings. 

Using Problem Context and Given Information in Theory Refinement 
Whenever the students began working through one of the accumulation tasks, they were 

continuously revising or replacing a local theory concerning the task. For Task 3, there were a 
few pieces of information students attached to while generating various solution strategies. 
Primarily, students knew that because the initial temperature was given to be 57.8 degrees 
Fahrenheit and the problem concerned climate change and the warming Earth, that their answer 
must be greater than 57.8 degrees Fahrenheit. Seven of the 12 students interviewed initially 
assumed that the given function would output the average surface temperature in the year 2200. 
This assumption runs contrary to the actual problem text in which it is stated that “the 
temperature is rising at the rate of: 𝑅 𝑡 = 0.014𝑡(.) degrees Fahrenheit per year.” While many 
of them read the task out loud prior to beginning their work, they neglected this specific 
description of the function as a rate and instead assumed it represented the average surface 
temperature.  

With this assumption, each of the seven students then evaluated R(200) and were then faced 
with contradictory evidence since R(200) equals approximately 0.116. Each of the seven students 
then realized their current theory was no longer viable, their understanding of what the answer to 
the task should be overwrote their assumption that the function would output the average surface 
temperature and so a new local theory was developed to explain this new contradictory evidence. 
As Tom acknowledged after seeing the result of R(200), “and I said that was wrong because I 
was, wait, that’s so small.” It is important to note that this realization does not necessarily lead 
the students to interpret the output of the function as it was intended, as a rate of change. When 
contradictory evidence is acknowledged, the student adjusts their local theory or abandons it for 
another local theory that is more viable to them. In five of the seven interviews in which students 
acknowledged this contradictory evidence, the student then developed a second local theory with 
the core assumption that the function is outputting the change in the average surface temperature 
instead of the average surface temperature itself. Thus, the students tend to suggest adding 0.116 
to 57.8 to find the new average surface temperature. This new hypothesis is more viable for the 
students since it fits within the contextual assumptions they have made. This hypothesis is not 
mathematically accurate. The students are adding a value of the instantaneous rate of change to 
the initial temperature instead of using the rate of change to approximate or calculate the change 
in the temperature over the 200 years. However, the students do not tend to perceive any 
contradiction here, their current local theory is viable to them since the contextually-based 



assumptions are now not in any perceived contradiction with the evidence. The fact that their 
solution is mathematically inaccurate is not a factor in the students’ assessment of viability. 

In Figure 4 below, we see such an example in Anne’s local theory diagram for her work on 
Task 3. We see in Anne’s first local theory that her core assumption is R(t) outputs the average 
surface temperature. While she describes the function as the “rate of change for the temperature” 
she then claims that by plugging in 200 into the equation she will get the average surface 
temperature in the year 2200. After calculating R(200) she notes that this is a very small value 
and after I ask her what the function tells her about the context she drops her current theory for a 
more viable one, one with a core assumption that the function outputs the change in the average 
surface temperature. This theory is more viable for Anne since she is now able to explain her 
formerly contradictory information that R(200) is a small number. I ask Anne specifically what 
the units on R(t) are with the intention of seeing if this will cause her to acknowledge another 
contradiction but she is content in stating the units are degrees Fahrenheit per year without 
acknowledging any contradiction in her theory. Later in the interview, after she had completed 
all the other tasks, I again direct her attention to the units and ask her if she can add degrees per 
year to degrees. Now, based on this question and my desire to return to this task, Anne shifts to 
another local theory with the core assumption that the function outputs the rate of change of the 
average surface temperature instead of the actual temperature or the temperature change. Anne 
now reasons that the rate of change would vary each year and so she would have to add the value 
each year to the starting temperature of 57.8 degrees. Anne has now utilized the context of the 
task, the given information from the task, and the interview setting to continually revise her local 
theory about the task and so her final local theory would be considered the most viable for her at 
the end of the interview. 
 

 
Figure 3. Local theory diagram for Anne's work on Task 3 

Reasoning About Contradictions via Problem Context 
Another way students utilized the context in reasoning about Task 5 was how they 

interpreted the negative table values. For some students, like Jake, they could shrug off a 
potential contradiction. Jake interpreted the table values as representing the number of infected 
individuals. This means that a negative table value could have served as a contradiction, leading 



to a theory shift. However, Jake waves away the contradiction by claiming that the negative table 
values must imply, “there’s like a negative amount of people infected I guess. Um, let’s see, I 
don’t know just, dropped below the line of infected individuals, I guess maybe they were 
infected and they died? And they’re still… or maybe they’re people immune.” Jake does not 
have to settle on any one idea here to disregard the apparent issue. It appears he assumes he must 
not fully understand the problem and so this allows him to continue with his core assumption that 
the table values represent the number of infected individuals instead of having to generate a new 
local theory. This may be related to the difficulties other researchers have identified with how 
students reason about area under the curve when a function is not strictly positive (e.g., Orton, 
1983). 

Anne similarly reasons her way through a potential contradiction but instead of attributing 
the discrepancy to a lack of understanding, she adjusts the problem context entirely to fit within 
her current theory therefore preserving the viability of her assumption that the table values 
represent the number of infected individuals. Anne acknowledges that negative people is not a 
viable interpretation, “so I mean obviously, you don’t have like negative people but, like it’s 
saying on day zero there was eighteen people…” but instead of altering her theory to increase 
viability, she alters the problem itself. She claims that the negative five in the table must 
represent five people who should have been included in the original figures but were not, “I 
guess if like if they had these people as the original eighteen then they found five people who 
were sick who weren’t sick anymore they would be like oh, that was five people hadn’t included 
in the original number that were sick and, but now they’re not sick.” This is a rather 
sophisticated approach to maintain the consistency of her theory and I believe this creative 
alteration of the given data is only possible for her because of her confidence with and 
understanding of the context.  

Implications 
There is ample evidence in the current study that problem context influenced how the 

students reasoned about the tasks. For educators, this means that we need to give students ample 
opportunities to solve accumulation tasks within various contexts. The results of this study 
indicate that students may only reason about the accumulation in specific ways when given a 
specific representation. Additionally, we need to be cautious about what kinds of tasks we use in 
summative assessments in calculus. Assuming a student’s performance on a contextually-based 
test question accurately models that student’s ability to solve similar tasks in different contexts 
may not be warranted. Their experiences in their chosen major and their educational history has 
given them specific tools they will utilize to reason about these tasks. 

Viewing students’ work on calculus tasks through the lens of viability is a meaningful way to 
approach the data analysis. The local theory diagrams were immensely helpful in my attempt to 
better understand how the students were solving the tasks by developing and revising local 
theories concerning the tasks. Creating these diagrams provided me the opportunity to view the 
data through a different lens and thus I came to understand more about how students interpret 
calculus tasks and what it takes for them to notice a mathematical contradiction. I believe there is 
merit in the continued development and use of the local theory diagrams in qualitative data 
analysis both in calculus and more broadly in mathematics education research. 
 



References 
Bajracharya, R. R., & Thompson, J. R. (2014). Student application and understanding of the 

Fundamental Theorem of Calculus at the mathematics-physics interface. In T. Fukawa-
Connolly, G. Karakok, K. A. Keene, & M. J. Zandieh (Eds.), Proceedings of the 17th Annual 
Conference on Research in Undergraduate Mathematics Education (pp. 43–54). Denver, CO.  

Bajracharya, R. R., Wemyss, T. M., & Thompson, J. R. (2012). Student interpretation of the 
signs of definite integrals using graphical representations. AIP Conference Proceedings, 
1413(2012), 111–114. http://doi.org/10.1063/1.3680006  

Bressoud, D. M. (2015). The calculus students. In D. M. Bressoud, V. Mesa, & C. Rasmussen 
(Eds.), Insights and Recommendations from the MAA National Study of College Calculus 
(pp. 1–16). Washington, D.C.: MAA Press.  

Bressoud, D. M., Carlson, M. P., Mesa, V., & Rasmussen, C. (2013). The calculus student: 
Insights from the Mathematical Association of America national study. International Journal 
of Mathematical Education in Science and Technology, 44(5), 685–698. 
http://doi.org/10.1080/0020739X.2013.798874  

Charmaz, K. (2000). Grounded theory: Objectivist and constructivist methods. In The Handbook 
of Qualitative Research (2nd ed., pp. 509–535). http://doi.org/10.1007/s13398-014-0173-7.2  

Confrey, J., & Kazak, S. (2006). A Thirty-Year Reflection on Constructivism in Mathematics 
Education in PME. In Handbook of Research on the Psychology of Mathematics Education 
(pp. 305–345).  

Ferrini-mundy, J., & Graham, K. (1994). Research in Calculus Learning: Understanding of 
Limits, Derivatives, and Integrals. In J. J. Kaput & E. Dubinsky (Eds.), MAA Notes Number 
33 (pp. 31–45). Mathematical Association of America.   

Grundmeier, T. A., Hansen, J., & Sousa, E. (2006). An exploration of definition and procedural 
fluency in integral calculus. PRIMUS, 16(2), 178–191. 
http://doi.org/10.1080/10511970608984145  

Jones, S. R. (2013). Understanding the integral: Students’ symbolic forms. The Journal of 
Mathematical Behavior, 32(2), 122–141. http://doi.org/10.1016/j.jmathb.2012.12.004  

Jones, S. R. (2015a). Areas, anti-derivatives, and adding up pieces: Definite integrals in pure 
mathematics and applied science contexts. The Journal of Mathematical Behavior, 38, 9–28. 
http://doi.org/10.1016/j.jmathb.2015.01.001 

Jones, S. R. (2015b). The prevalence of area-under-a-curve and anti-derivative conceptions over 
Riemann sum-based conceptions in students’ explanations of definite integrals. International 
Journal of Mathematical Education in Science and Technology, (February 2015), 1–16. 
http://doi.org/10.1080/0020739X.2014.1001454  

Kaput, J. J. (1997). Rethinking Calculus: Learning and Thinking. The American Mathematical 
Monthly, 104(8), 731–737. 

Mahir, N. (2009). Conceptual and procedural performance of undergraduate students in 
integration. International Journal of Mathematical Education in Science and Technology, 
40(2), 201–211. http://doi.org/10.1080/00207390802213591  

Orton, A. (1983). Students’ Understanding of Integration. Educational Studies in Mathematics, 
14(1), 1–18.  

Rasmussen, C., Marrongelle, K., & Borba, M. C. (2014). Research on calculus: What do we 
know and where do we need to go? ZDM Mathematics Education, 46, 507–515. 
http://doi.org/10.1007/s11858-014-0615-x  



Sealey, V. (2006). Definite Integrals, Riemann Sums, and Area Under a Curve: What is 
Necessary and Sufficient? In S. Alatoree, J. L. Cortina, M. Saiz, & A. Mendez (Eds.), 
Proceedings of the 28th Annual Meeting of the North American Chapter of the International 
Group for the Psychology of Mathematics Education (Vol. 2, pp. 46– 53). Merida, Mexico: 
Universidad Pedagogica Nacional.  

Sealey, V. (2014). A framework for characterizing student understanding of Riemann sums and 
definite integrals. Journal of Mathematical Behavior, 33, 230–245. 
http://doi.org/10.1016/j.jmathb.2013.12.002  

Thompson, P. W. (1994). Images of rate and operational understanding of the Fundamental 
Theorem of Calculus. Educational Studies in Mathematics, 26, 229–274.  

von Glasersfeld, E. (1982). An Interpretation of Piaget’s Constructivism. Revue Internationale de 
Philosophie, 36(4), 612–635.   

  


