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We discuss a magnitude conception and a substance conception of fractions and variables that 
future middle-grades and secondary teachers used when developing and explaining equations 
for proportional relationships by reasoning about quantities. We conjecture that both 
conceptions are important for developing equations. The substance conception is useful when a 
fraction or variable functions as a multiplicand, but not when it functions as a multiplier. The 
magnitude conception is useful when a fraction or variable functions as a multiplier, but may not 
be essential when it functions as a multiplicand. Expertise may involve recognizing that the 
conceptions are distinct and developing a sense of when each conception is useful. 
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The domain of ratio and proportional relationships is a gateway to algebra, other topics in K-
12 and undergraduate mathematics, and science (National Center on Education and the 
Economy, 2013). Yet this crucial domain is also one of the most challenging to learn (e.g., 
Lamon, 2007). Our research group has been studying how future middle grades and secondary 
teachers reason about ratios and proportional relationships as they take our mathematics content 
courses, which focus on multiplicative ideas. In this paper, we are interested in reasoning that 
takes a variable-parts perspective on proportional relationships (Beckmann & Izsák, 2015), a 
perspective that had been largely overlooked in the research literature, but provides a pathway to 
developing equations and solving proportions. In these reasoning situations, we are interested in 
what ideas are useful and generative, and what ideas are especially hard. We discuss a conjecture 
about two conceptions of fractions and variables—a magnitude conception and a substance 
conception. Based on preliminary analysis of data, we conjecture that both conceptions play an 
important role in generating and explaining equations for quantities in a proportional 
relationship, and that knowing when to use which conception is an aspect of expertise.  

Background and Theoretical Perspectives 
We view ratios and proportional relationships as part of the multiplicative conceptual field 

(Vergnaud, 1988)—a web of interrelated ideas that also includes multiplication, division, 
fractions, and linear relationships. According to Beckmann and Izsák (2015), a quantitative 
definition of multiplication can organize and connect multiplication, division, and proportional 
and inversely proportional relationships. We therefore use quantitative definitions of 
multiplication and fractions as central organizing ideas in our mathematics content courses for 
future middle grades and secondary teachers. 

Quantities and Magnitudes 
Measurement includes describing the size of entities (objects or stuff) as some number of a 

chosen measurement unit, which can be a standard unit, such as a liter, or a non-standard unit, 
such as a strip drawn on a piece of paper. Although quantities are often described as numbers 
with units (e.g., CCSS; Common Core State Standards Initiative, 2010), we agree with 
Thompson (1994) that one need not have selected a specific measurement unit to conceive of an 



entity as a quantity. In this paper, we define “quantity” to mean an entity that either serves as a 
measurement unit or could be expressed as some number of another measurement unit, where 
“some number” means any positive whole, rational, or irrational real number. For example, if a 
student views one strip drawn on a piece of paper as 2/5 of another drawn strip, then we consider 
the student to be treating both strips as quantities. 

The language of linear algebra may be helpful for thinking about quantities. For each 
measureable attribute, such as length, weight, or volume, we can associate with that attribute a 
one-dimensional vector space over the real numbers. Given such a vector space, there is no 
automatic choice for a basis, and we can work with the vector space without having chosen a 
basis. Therefore, when we view an entity as a quantity, we essentially consider it as an element 
of one of these one-dimensional vector spaces, but we need not think of the quantity in terms of a 
basis for the vector space. When we choose a measurement unit for a given attribute, this 
measurement unit forms a basis for the one-dimensional vector space, and a quantity can be 
expressed as a scalar multiple of the basis vector, i.e., the quantity can be expressed as so and so 
many of the chosen measurement unit. We call this scalar (real number) the magnitude of the 
quantity with respect to the chosen measurement unit (see also Thompson, Carlson, Byerly, & 
Hatfield, 2014). 

A Quantitative Definition of Multiplication 
Although people can use intuitive models to recognize some multiplication situations (e.g., 

Fischbein, Deri, Nello, & Marino, 1985), if we want students and teachers to be able to make 
principled arguments for why multiplication applies in a situation, then we need a definition of 
multiplication. If multiplication is to be understood as a single coherent operation that applies 
across many different types of situations and across whole numbers, fractions, and decimals, then 
we need a definition of multiplication that applies to all these cases. One version of a definition 
we use in our courses for future teachers is as follows. In a situation involving quantities, we say 
that M � N = P if M is the number of groups in the product amount, N is the number of base units 
in 1 group, and P is the number of base units in M groups for a suitable base unit, group, and 
product amount in the situation. We call M the multiplier, N the multiplicand, and P the product; 
M, N, and P can be non-negative whole numbers, fractions, or decimals. This definition is similar 
to the one given by Beckmann and Izsák (2015). In some of our courses we have reversed the 
order of multiplier and multiplicand and written the multiplicand first and the multiplier second. 
Within a course, we use a consistent order to facilitate clear communication. 

This definition of multiplication connects multiplication with measurement (e.g., Davydov, 
1992). In the definition, N, M, and P are magnitudes of the quantities “the group” and “the 
product amount” with respect to the measurement units “the base unit” and “the group.” In 
particular, the multiplier and the product are the results of measuring the product amount in two 
ways. In some versions of our definition, we clarify the measurement language by defining the 
multiplicand as the number of base units it takes to make 1 group exactly, the multiplier as the 
number of groups it takes to make the product amount exactly, and the product as the number of 
base units it takes to make the product amount exactly.  

Reasoning with the definition of multiplication requires organizing and structuring quantities  
by unitizing, iterating, and partitioning—ideas that have been identified as foundational to 
multiplicative reasoning in the literature (e.g., Hackenberg & Tillema, 2009). It requires 
unitizing because N base units form 1 group, so those N base units function as a unit; it requires 
iterating because if M is 5, one must consider 5 copies or iterates of that group; it requires 



partitioning because if M is 1/5, one must consider 1/5 of that group, so one must partition the 
group into 5 equal-sized parts. 

A Quantitative Definition of Fraction and Fraction Subconstructs 
In our courses for future teachers, we use essentially the same definition of fraction as in the 

Common Core State Standards for Mathematics (CCSS, 2010). We define a unit fraction 1/B to 
be the amount formed by 1 part when a unit amount (or whole) is partitioned into B equal-sized 
parts. A fraction A/B is defined to be the amount in A parts, each of size 1/B of the unit amount 
(or whole). Therefore, this definition relies on partitioning to form unit fractions and on iterating 
unit fractions to form both proper and improper fractions. Viewing fractions as obtained by 
iterating unit fractions can be valuable for students (e.g., Behr, Lesh, Post, & Silver, 1983), and 
we have found that our future middle grades and secondary teachers reason effectively with this 
definition. 

Various fraction subconstructs or interpretations have been identified in the literature, 
including the measurement and operator subconstructs (e.g., Behr, Lesh, Post, & Silver, 1983; 
Kieren, 1976). With the measurement interpretation, fractions can be viewed as plotted on 
number lines via measurement. To plot the fraction A/B we measure A parts, each of size 1/B of 
the unit (the interval from 0 to 1). With the operator interpretation, the fraction A/B is seen as a 
transformation that takes one quantity to another, for example by stretching or shrinking. 

Later in this paper we identify substance and magnitude conceptions of fractions, which are 
different from the fraction subconstructs in the literature. The magnitude and substance 
conceptions are essentially orthogonal to the measurement subconstruct, whereas the magnitude 
conception may be a prerequisite for some instances of the operator subconstruct.  

Equations for Proportional Relationships 
Proportional relationships in which two unknown quantities are in a fixed ratio can be 

modeled by equations in two variables, including equations of the form y = m•x or y = x•m, 
where m is a constant of proportionality. By “variable” we mean a letter or symbol that stands for 
any number from some set (which might not be explicitly specified). Multiplication is 
numerically commutative, but the multiplier and multiplicand play different roles in quantitative 
situations. Depending on how the quantities in a situation are structured and organized, one of y 
= m•x or y = x•m might be better for modeling the situation.  

In this paper, we are interested in cases where the constant m is a fraction a/b (so a and b are 
positive integers). Thus, our quantitative definitions for multiplication and fractions are 
potentially useful for explaining and generating equations for quantities in a proportional 
relationship. We are interested in ideas needed to generate and explain equations that relate 
quantities, especially when the quantities are viewed from the variable-parts perspective 
(Beckmann & Izsák, 2015), as in the paint task in Figure 1. The 2 parts of blue paint and the 5 
parts of yellow paint in that task are all the same size as each other, but that size is unspecified 
and could vary. The equations Y = 5/2 • X and X = 2/5 • Y (among many others) model the 
situation in the paint task and fit with the definition of multiplication by taking 1 base unit to be 
1 gallon and 1 group to be either all the blue paint or all the yellow paint.  



 
Figure 1. A proportional relationship task about paint, from a variable-parts perspective. 

Generating algebraic equations is known to be difficult in part because understanding how 
algebraic notation symbolizes quantitative situations is difficult (see Kieran, 2007). Even 
advanced students produce equations with a “reversal error,” such as 6S = P for a situation in 
which there are 6 students for every professor (e.g., Clement, 1982). Hackenberg and Lee (2015) 
explained students’ difficulties with generating equations in terms of students’ multiplicative 
concepts, which involve capacities to coordinate multiple levels of nested units and to anticipate, 
hold in mind, and reorganize such structures. Other authors have pointed to students’ 
conceptions of variables as a source of difficulty, such as treating a variable as a shorthand label 
for an object or unit (e.g., Küchemann, 1981; Lucariello, Tine, & Ganley, 2014, McNeil et al., 
2010). These authors described such a conception of variables as low level or as a 
misconception. According to Küchemann, using a letter as an object amounts to reducing the 
letter’s meaning from something abstract to something more concrete. He noted that such a 
reduction often occurs when it is not appropriate, especially in cases where one must distinguish 
between objects themselves and the number of objects. Yet Beckmann & Kulow (2018) found 
that future middle grades teachers often used variables as labels when they generated valid 
equations and produced viable arguments using fractions and multiplication. 

A Knowledge-in-Pieces Stance Toward Cognition 
We take Knowledge-in-Pieces as our theoretical frame for studying cognition (e.g., diSessa, 

1993). In particular, we assume students’ knowledge in a mathematical domain is an ecology 
consisting of many elements, some of which are primitive and intuitive, and simply taken as 
given, and some of which are more scientific in nature. Some knowledge elements may be 
closely coordinated, whereas others may be seen as unrelated. Knowledge elements are highly 
sensitive to context. A knowledge element might be cued in one context but not in another where 
an expert might view it as relevant. We view learning as a process that involves refinement and 
coordination of knowledge elements, not a process of repealing and replacing ideas (e.g., Smith, 
diSessa, & Roschelle, 1993). In particular, this refinement and coordination consists of 
separating ideas as well as connecting them, and it consists of discerning features of new 
contexts that make an idea applicable or not applicable, or that make using one idea preferable 
over another idea (Wagner, 2006). Thus, becoming proficient in generating and explaining 
equations could involve distinguishing different ways of thinking about a variable or a fraction 
and a sense of when each way of thinking is more useful or less useful. 

Methods, Data Sources, and Research Question 
As part of a larger ongoing investigation into future middle grades and secondary teachers’ 

reasoning in the multiplicative conceptual field, we are interested in generating and testing 



conjectures about ways of thinking about fractions and variables that may be important when 
developing, explaining, or interpreting equations and expressions involving multiplication. This 
paper is primarily theoretical because it discusses conjectures we have generated based on initial 
passes through our data. Our research question for this paper is therefore: Based on our project’s 
data, what ways of thinking about fractions and variables, beyond those already identified in the 
literature, can we conjecture to be important for generating and explaining equations to relate 
two unknown quantities that are in a proportional relationship, viewed from a variable-parts 
perspective?  

Data come from 104 semi-structured 75-minute interviews conducted individually with 22 
participants, 10 from 2 cohorts of future middle grades mathematics teachers (5 interviews each) 
and 12 from 2 cohorts of future secondary mathematics teachers (6 with 5 interviews each and 6 
with 4 interviews each). All participants were taking mathematics content courses focusing on 
ideas in the multiplicative conceptual field between the fall of 2014 and the spring of 2017. 
Interview questions were related to course topics, although some interview questions preceded 
instruction in a relevant topic. The participants were selected to be mathematically diverse based 
on their performance on a fractions survey (Bradshaw, Izsák, Templin, & Jacobson, 2014). The 
data included transcribed video-recording of each interview and scanned copies of the written 
work each participant generated. To analyze the data, members of the research team watched 
interviews multiple times, attending to words, gestures, and inscriptions, and wrote cognitive 
memos discussing and summarizing participants’ reasoning. 

Conjectures about Conceptions of Fractions and Variables 
Based on our initial analysis, we identify two conceptions about fractions and variables—a 

substance conception and a magnitude conception—that we conjecture play important roles in 
developing and explaining equations for proportional relationships. To illustrate these 
conceptions, we use examples that are glosses of reasoning we found across multiple 
participants, interviews, and interview tasks. 

A Substance Conception of Fractions and Variables 
A person uses a substance conception of a fraction or variable if the person explicitly views 

the fraction or variable as a label, name, or descriptor of an entity, or as the entity itself. In the 
case of variables, the substance conception is essentially the same as the label or object 
conception of variables that has been described in the literature (e.g., McNeil et al., 2010). For 
example, if a student describes the second strip in Figure 1 as Y and means it as a label or name 
for the strip, then at that moment, the student is using a label conception of the variable Y. We do 
not use the term “label conception” because in the case of numbers, we do not want the 
conception to be confused with cases where a number serves as a non-quantitative label or name, 
such as a house number or telephone number. 

In the case of fractions, if a student describes one of the 5 parts in the second strip in Figure 1 
as “a one-fifth-part,” or says that the part “is one-fifth,” and means that 1/5 is a descriptor or 
name for the part, or stands for the part itself, then at that moment, the student is using a 
substance conception of fraction. 

We note that the substance conception can also apply to phrases. For example, a student 
might describe the 5-part yellow paint strip and 2-part blue paint strip in Figure 1 as “the yellow 
paint” and “the blue paint” respectively, write the equation “the blue paint = 2/5 of the yellow 
paint,” and then write the equation X = 2/5Y. In this case, the student uses a substance conception 
of the phrases “the blue paint” and “the yellow paint,” and they might continue to use this 



substance conception with the variables X and Y. In any case, the student treats the blue paint and 
the yellow paint as quantities, but they might not be thinking of those quantities as some number 
of a specified measurement unit, and therefore might not be thinking of X and Y as magnitudes. 
In essence, the student’s equations would be like saying that one vector is equal to a scalar 
multiple of another vector. In fact, if we interpret X and Y as elements of a vector space, then the 
equation X = 2/5Y makes perfect sense even if no basis has been chosen for the vector space. So 
even though we expect the equation X = 2/5Y to be about numbers and to fit with the definition 
of multiplication, this might not fit readily with a student’s interpretation.  

A Substance Conception of a Multiplicand may Be Productive. In the example just 
presented, which led to the equation X = 2/5Y, the variable Y functions as a multiplicand: it 
represents 1 group, and 2/5 of that group is the amount of blue paint, X. We conjecture that more 
generally, when a fraction or variable functions as a multiplicand, a substance conception of a 
fraction, variable, or related phrase may help the student (1) view the situation in terms of 
quantities and (2) formulate a correct equation by reasoning about quantities in the situation. 

This conjecture is consistent with productive reasoning we have seen with improper 
fractions. In fact, our definition of fraction almost invites a substance conception. For example, 
the fraction 5/2 is defined as the amount formed by 5 parts, each of size ½ of the unit amount. 
According to this definition, 5/2 is essentially the product 5•1/2, where ½ is the multiplicand. 
Working with the strips in Figure 1, a student might view ½ as a label for each of the 2 parts in 
the first strip, and also for each of the 5 parts in the second strip. The student might then describe 
the second strip as 5 parts, each ½, and therefore as 5/2. Even though the student views ½ as a 
label, the ½ also functions as a quantity for the student because the student considers 5 of the 
halves. This seems to be a productive way to make sense of improper fractions. What could still 
be missing, however, is the idea that ½ and 5/2 are magnitudes—the numerical outcome of 
measurement by the 2-part strip.  

A Substance Conception of a Multiplier may Be Unproductive. In contrast, when a 
fraction or variable functions as a multiplier, we conjecture that a substance conception can lead 
to unproductive interpretations of multiplication. For example, if a student is asked to make a 
drawing to help explain the meaning of 1/6•X according to our definition of multiplication, the 
student might draw a 6-part strip, call each part a 1/6-group, and write X in each part, explaining 
that each 1/6-group has X in it. The student sees each part as 1 group, and sees 1/6 as describing 
the type of the part, thereby taking a substance conception of 1/6. The substance conception 
doesn’t help the student view 1/6 as how many groups are being considered. 

This conjecture is consistent with Küchemann’s (1981) finding that students were especially 
challenged to formulate correct algebraic expressions in situations where variables stood for 
(whole) numbers of objects. The students may have interpreted the variables as the names or 
types of the objects rather than as their number.   

 A Magnitude Conception of Fractions and Variables 
A person uses a magnitude conception of a fraction or variable if the person explicitly views 

the fraction or variable as a magnitude, i.e., as the result of measuring one quantity by another 
quantity (which need not be separate from the first quantity). For example, if a student 
understands that it takes 2/5 of the second strip in Figure 1 to make the first strip, then at that 
moment, the student is using a magnitude conception of 2/5. Similarly, if a student views Y as the 
number of gallons of yellow paint in the situation of Figure 1, then at that moment, the student is 
using a magnitude conception of Y. 



A Magnitude Conception of a Multiplicand may not Be Necessary. To use the definition 
of multiplication as intended does require understanding the multiplicand as a magnitude. 
However, some students might be able to formulate and explain valid multiplication equations by 
reasoning about quantities while using only a substance conception of the multiplicand. They 
might even be able to use the equations by substituting numbers for variables even though they 
don’t think of the variables as magnitudes.  

A Magnitude Conception of a Multiplier may Be Necessary. In contrast, when a fraction 
or variable functions as a multiplier, we conjecture that a measurement conception is necessary 
for a productive interpretation of multiplication. We also conjecture that a measurement 
conception can be cued by asking a measurement question such as “How many of the second 
strip in Figure 1 does it take to make the first strip exactly?” A student who answers this question 
as 2/5 may then see that it takes 2/5 of Y to make X and may therefore formulate the equation 2/5 
• Y = X even if they have a substance conception of Y and X at the moment. 

The Two Conceptions and Moment-by-Moment Reasoning 
Finally, we conjecture that the substance and magnitude conceptions are not mutually 

exclusive. In particular, we conjecture that (1) students can hold the two conceptions 
simultaneously or that they may switch between the two from one moment to the next, (2) 
students may not recognize that are using two distinct conceptions when they are reasoning about 
fractions or variables, and (3) developing expertise with equations involves developing a sense of 
the difference in the two conceptions and knowing when to use which one.   

Conclusion and Future Directions 
The future teachers in our mathematics content courses on multiplicative reasoning come to 

us with various ideas about developing equations, including intuitive or rote approaches, such as 
setting up an equation of the form a/b = c/d from “a is to b as c is to d.” We teach our students to 
refine their ideas and develop mathematically sound explanations for equations and solution 
methods by reasoning about how to structure, organize, and relate quantities. To structure, 
organize, and relate quantities, students must engage with ideas about unitizing, iterating, and 
partitioning. In addition to these ideas, we conjecture that students also need to refine how they 
think about quantities, the measurement of quantities, and the mathematical notation we use to 
describe quantities and their size.  

The conjectures we have formulated for this paper come from an initial analysis of a large 
amount of data. The next step is to find a principled way to select a circumscribed portion of the 
data for closer examination, so that the conjectures can be put to a rigorous test. We are 
especially interested in discussions with the audience about this next phase of analysis. 
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