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I examine one preservice mathematics teacher’s (PST’s) covariational reasoning in relation to 

two functions involved in modeling global warming. I also discuss how her covariational 

reasoning mediates her understanding of important concepts related to global warming. Jodi, 

the PST, completed a mathematical task I created for the study during an individual, task-based 

interview. The analysis of Jodi’s responses revealed that: (a) the level of covariational reasoning 

and conceptions regarding quantities can constrain/facilitate the understanding of concepts 

related to global warming, (b) overreliance on discrete variation can led to conflicting notions 

regarding global warming, and (c) reasoning about rate of change is necessary to make sense of 

mathematical models for global warming based on energy balance. 
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Introduction 

In recent years, there have been several calls to include global warming in school and college 

instruction (McKeown & Hopkins, 2010; UNESCO, 2012). Global warming is a contemporary 

and pressing issue affecting different people around the globe (Intergovernmental Panel on 

Climate Change [IPCC], 2013). Moreover, global warming provides a motivating scientific 

context to study important scientific and mathematical concepts. Mathematics teachers, however, 

are likely not prepared to incorporate global warming into their instruction. Researchers have 

demonstrated that the public have many problematic conceptions about important concepts 

related to global warming (Leiserowitz, Smith, & Marlon, 2010; Pruneau, Khattabi, & Demers, 

2010). Also, teachers and students without sufficient scientific and mathematical literacy can 

have difficulties understanding concepts related to global warming (Barwell, 2013; Lambert & 

Bleicher, 2013). Therefore, there are both societal and cognitive needs for studies regarding 

global warming and mathematical reasoning. 

In my research, I investigated how preservice mathematics teachers (PSTs) make sense of 

introductory mathematical models for global warming. By introductory models, I mean those for 

which the mathematics can be accessible to high-school students. The models require PSTs to 

think about a dynamic situation in terms co-variation between quantities. Existing research in 

mathematics education has demonstrated that students and future mathematics teachers can have 

persistent difficulties comprehending and mathematically expressing co-variation between 

quantities (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Johnson, 2012; Oehrtman, Carlson, 

Thompson, 2008; Thompson, 2011). In this paper, I focus on one PST’s covariational reasoning 

in relation to two functions: the planetary energy imbalance function, N(t), and the planet’s 

mean surface temperature function, T(t). I also discuss how her covariational reasoning mediates 

her understanding of important concepts related to global warming. 

 

Background Information 

Earth’s climate system is powered by the sun and there is a continuous flow of energy 

between the sun, the planet’s surface, and the atmosphere. This continuous flow of energy is 



known as the Earth’s energy budget (Figure 1). The sun warms the planet’s surface (S). As the 

surface warms up, it radiates (infrared) energy to the atmosphere (R), the majority of which is 

absorbed by greenhouse gases (GHG) such as water vapor (H2O), carbon dioxide (CO2), and 

methane (CH4) (B). The atmosphere re-radiates the absorbed energy in both directions toward 

space and toward the surface (A). This continuous energy exchange between the surface and the 

atmosphere is known as the greenhouse effect and influences the planet’s mean surface 

temperature. The energy flows S, R, B, L, and A (Figure 1) are all magnitudes of energy flux 

density, while the abundance of GHG is a magnitude of concentration. Energy flux density is a 

flow of energy per unit of area per unit of time incident to a surface, usually measured in Joules 

per square meter per second (J/m2/s). Concentration is the volume of a gas relative to the total 

volume of the mixture in which the gas is contained, usually measured in the same units of 

volume (e.g., m3/m3) or in parts per million by volume (ppmv). The parameter 0 < g < 1 (Figure 

1) is related to the greenhouse effect. Quantifying changes in the energy flows due to changes in 

the abundance of GHG is central to accurately model global warming. My study focuses on how 

variation in the atmospheric concentration of CO2 produces variation in the energy flows over 

time, and how that variation affects the planet’s mean surface temperature. 

 
Figure 1: The Earth’s energy budget, assuming a one-layered atmosphere 

 

The planetary energy imbalance function N(t) is a measure of the energy imbalance in the 

Earth’s energy budget over time. In particular, N(t) can be defined as a difference between the 

downward radiation and the upward radiation at the planet’s surface, or mathematically N(t) = (S 

+ A(t)) – R(t). The Earth’s energy budget is said to be in radiative equilibrium when N(t) = 0 

(downward radiation equals upward radiation), which implies that the planet’s mean surface 

temperature function T(t) remains constant. However, there are factors or forcing agents that can 

push the energy budget out of equilibrium, producing N(t) ≠ 0. The present study focuses on how 

N(t) and T(t) vary over time after a positive forcing by CO2 occurs at t = 0. An instantaneous 

increase in the concentration of CO2 results in an atmosphere with more capacity to absorb 

surface radiation R(t). This translates into a value for A(0) such that N(0) = (S + A(0)) – R(0) > 

0, which means that the downward radiation exceeds the upward radiation. As a result, the 

planet’s surface starts warming up (i.e., an increasing T(t)); a hotter surface produces more 

radiation (i.e., an increasing R(t)). The atmosphere absorbs even more radiation, increasing its 

own radiation back to the surface (i.e., an increasing A(t)), further warming the surface. The 

expression N(t) = (S + A(t)) – R(t) = S –  R(t), where S is the solar constant and  = 1 – g/2, 

indicates that R(t) continues to increase until the upward radiation equals the downward radiation 

since N(t)  0 as t  . This in turn indicates that T(t) increases at a decreasing rate as it 

approaches to a new equilibrium temperature. In fact, mathematical models for global warming 



commonly known as Energy Balance Models (EBMs) rest on the idea that 
𝑑𝑇

𝑑𝑡
= 𝛼𝑁(𝑡) for a 

constant  > 0 (Widiasih, 2013). 

 

Conceptual Framework 

Carlson et al. (2002) defined covariational reasoning as “the cognitive activities involved in 

coordinating two varying quantities while attending to the ways in which they change in relation 

to each other” (p. 354). Based on this definition, Carlson and colleagues developed the 

Covariation Framework as a theoretical instrument to examine and assess a student’s 

covariational reasoning abilities relative to a mathematical task showing two co-varying 

quantities. Their framework describes five mental actions involve in reasoning about quantities 

that vary together. Mental Action 1 (MA1) involves coordinating the value of one variable with 

changes in the other (e.g., labeling the axes with verbal indications of coordinating the two 

variables such as “y changes with changes in x”). Mental Action 2 (MA2) involves coordinating 

the direction of change of one variable with changes in the other variable (e.g., constructing an 

increasing straight line or verbalizing an awareness of the direction of change of output while 

considering changes in the input). Mental Action 3 (MA3) involves coordinating the amounts of 

change in one variable with changes in the other (e.g., plotting points, constructing secant lines, 

or verbalizing an awareness of the amount of change of the output while considering changes in 

the input). Mental Action 4 (MA4) involves coordinating the average rate of change of the 

function with uniform increments in the input variable (e.g., constructing contiguous secant lines 

or verbalizing an awareness of the rate of change of the output while considering uniform 

increments of the input). Mental Action 5 (MA5) involves coordinating the instantaneous rate of 

change of the function with continuous changes in the independent variable for the entire domain 

of the function (e.g., constructing smooth curve with clear indications of concavity changes, 

verbalizing an awareness of the instantaneous changes in the rate of change for the entire domain 

of the function, or correctly interpreting concavities and inflexion points). The collection of 

mental actions inferred from the student’s responses is examined to determine the student’s 

overall level of covariation reasoning relative to the task. There are five levels of development, 

each more sophisticated than and built upon the previous one: dependency of change (L1: y 

changes when x changes), direction of change (L2: y increases as x increases), amounts of 

change (L3: a change y in y correspond to a change of x in x), average rate of change (L4: y 

increases more rapidly for successive changes x in x), and instantaneous rate of change (L5: y 

increases more rapidly as x continuously increases). If a student’s covariational reasoning is 

classified at a particular level, then it is implied that the student’s covariational reasoning 

supports the mental action associated with that level and the mental actions associated to all 

previous levels. 

 

Methods 

This paper is part of a larger study that investigated how PSTs make sense of introductory 

mathematical models for global warming. That larger study consisted of two parts: (1) exploring 

PSTs’ conceptions of intensive quantities commonly used to model global warming, and (2) 

examining PSTs’ covariational reasoning relative functions commonly used to model global 

warming. To address these goals, I created an original sequence of six mathematical tasks 

involving intensive quantities, functions, and concepts related to global warming. 

Three secondary PSTs enrolled in a mathematics education program at a large Southeastern 

university participated in the larger study. The PSTs have completed three mathematics content 



courses (calculus I, calculus II, and introduction to higher mathematics) and were completing a 

mathematics education content course (connections in secondary mathematics). In this paper, I 

focus on the case of Jodi, one of the three PSTs who participated in the larger study. Specifically, 

I focus on Jodi’s responses to the sixth mathematical task in my sequence. Her case is interesting 

for two reasons. First, Jodi’s responses were markedly different from her peers, which represent 

a unique case for discussion. Second, her case shows clear examples of how covariational 

reasoning can mediate the understanding of scientific concepts related to global warming. 

I started by showing Jodi a 7-minute long video introducing the Earth’s energy budget, 

radiative equilibrium, and greenhouse effect. The video was retrieve from the NASA YouTube 

channel NASAEarthObservatory. Then, I answered any questions she may have had concerning 

the concepts discussed in the video. Next, I presented her with a diagram of the energy budget 

(Figure 2a) and the following task: 

An increase in the atmospheric concentration of CO2 results in an energy imbalance in 

the Earth’s energy budget. This initial imbalance is known as forcing by CO2. We want to 

examine how the planetary energy imbalance N(t) and the planet’s mean surface 

temperature T(t) vary over time after the forcing. Use what you learned about the Earth’s 

energy budget, the greenhouse effect, and the definition N(t) = (S(t) + A(t)) – R(t) to 

determine: (a) how N(t) varies over time and sketch its graph and (b) how T(t) varies 

over time and sketch its graph. 

Jodi completed the mathematical task during a 60-minute, semi-structured, task-based interview 

(Goldin, 2000). The interview was video recorded and transcribed for analysis. All of Jodi’s 

work on paper was collected as well. 

Videos and transcripts were analyzed through Framework Analysis (FA) method; this 

method five inter-related stages of data analysis: familiarization with data, developing an 

analytic framework, indexing and pilot charting, summarizing data in analytic framework, and 

synthesizing data by mapping and interpreting (Ward, Furber, Tierney, & Swallow, 2013). 

Through these stages, the researcher creates and refines framework analysis’ distinctive feature: 

the matrix output, a table arrangement into which the researcher systematically reduces, 

summarizes, and analyzes the data. I utilized the mental actions in the Covariation Framework 

(Carlson et al., 2002) as themes for coding interview transcripts. Then, I re-read all transcript 

texts categorized under a particular mental action. I selected and summarized those transcript 

texts that were more representative of that particular mental action. I repeated this process until I 

selected representative texts for each mental action. Then, I organized the selected texts into a 

matrix output containing five columns (one for each mental action) and two rows: one for N(t) 

and another for T(t). The matrix output allowed me to develop an idea of Jodi’s: (a) overall level 

of covariational reasoning, (b) understanding of N(t) and T(t), and (c) conceptions of the energy 

budget and radiative equilibrium. 

 

Results 

Jodi’s responses to the first part of the task suggest covariational reasoning abilities at the 

direction of change level (L2) when her object of reasoning was the situation (i.e., how the 

energy budget evolves after a positive forcing). When her object of reasoning was the graph of 

N(t), she demonstrated abilities at the amounts of change level (L3). To start the task, I told Jodi 

to imagine that an instantaneous increase in the atmospheric concentration of CO2 produces an 

imbalance of energy equal to N(0) = 5 J/m2/s (positive forcing by CO2). Jodi is then given a 

diagram of the Earth’s energy budget showing the initial values: S = 240 J/m2/s, R(0) = 390 



J/m2/s, B(0) = 310 J/m2/s, L(0) = 80 J/m2/s, and A(0) = 155 J/m2/s (Figure 2a). Notice that N(0) 

= (S + A(0))  R(0) = (240 + 155)  390 = 5. Jodi was expected to visualize how N(t) varies as 

time t increases. Jodi imagined energy moving from R to B, then to A, and finally back to R, 

what she labeled as cycles. Using these cycles, Jodi determined the following values for the 

energy flows R, B, and A: R(C1) = 395 J/m2/s; B(C1) = 313 J/m2/s, and A(C1) = 157 J/m2/s, and 

R(C2) = 397 J/m2/s; B(C2) = 315 J/m2/s, and A(C2) = 158 J/m2/s (Figure 2a), where Ci represents 

cycle i after the positive forcing. When I asked Jodi whether N(t) was increasing or decreasing, 

she stated “I guess it would increase? [Pauses] but, I don’t see an argument for why it wouldn’t 

stay the same.” I then asked her to determine the values of N(t) for each one of her cycles. Jodi 

determined the values N(C0) = 5 J/m2/s, N(C1) = 2 J/m2/s, and N(C2) = 1 J/m2/s, where Ci 

represents cycle i after the positive forcing. Jodi stated that she was not expecting N(t) to 

decrease over time (“I though N would be larger”). When I asked her to interpret this decreasing 

N(t), Jodi replied “[it means] that we are going back to an equilibrium, or we are not as far from 

equilibrium as we were.” When Jodi was able to establish the direction of change of N(t), she 

began to conceive N(t) as a measure of the energy imbalance. Also, the direction of change 

helped her develop the idea that the energy budget moves towards (radiative) equilibrium after a 

positive forcing. These represent foundational concepts to understand introductory mathematical 

models for global warming. 

 
Figure 2: (a) Jodi’s work on the diagram of the energy budget. (b) Jodi’s final graph of N(t). 

 

Jodi constructed the graph of N(t) by plotting the points (Ci , N(Ci)), and then joining them 

by a concave-up, decreasing curve (Figure 2b). Jodi looked at the curve and stated that “we are 

decreasing at a decreasing rate.” When asked to elaborate, Jodi said 

Each time we are increasing t, we are decreasing N by smaller amounts. Like here, we 

decrease 3 [curly brackets on Figure 2b], and then we decrease 1 … I am trying to make 

sure I know what the graph looks like. OK, when you have a graph and you do like this 

[draws a concave-up, decreasing curve], this is one and this is two [makes two equally-

spaced marks on the horizontal axis]; you would be decreasing by smaller amounts each 

time. The same thing what we are doing here [draws the curly brackets on Figure 2b], so 

I want to say that the graph looks like this: decreasing at a decreasing rate 

Jodi’s responses regarding the rate of change of N(t) and how N(t) decreases by smaller and 

smaller amounts were a result of reasoning about the graph of N(t). Jodi did draw a concave-up 

curve, but the concavity was the result of joining all points by a curve. Notice that she need not 

reason beyond L2 to accomplish that. Jodi did not notice that R, B, and A were also increasing at 

a decreasing rate. This suggests that she was not attending to the situation when thinking about 

amounts of change. It was by using the graph as her object of reasoning that Jodi attended to the 



variation in amounts of change in N with respect to changes in time. This appears as a version of 

L3 covariational reasoning, a version that makes use of the graph as an object of reasoning. It did 

not seem that this version of L3 helped Jodi understand the energy budget since the latter was not 

the object of reasoning. Also, Jodi’s verbalization regarding the rate of change of N(t) must be 

taken with caution. Jodi’s responses suggest that she was reasoning in terms of amounts of 

change rather than rate of change. It is, therefore, unlikely Jodi’s covariational reasoning was at 

the rate of change levels L4 or L5. 

Jodi provided an interesting interpretation of N(t) in relation to the variation in energy (or 

heat) in the surface. Jodi stated that the surface was losing heat because N(t) was decreasing. 

When asked to elaborate, Jodi stated that “we would need to be losing energy so that we can go 

back to equilibrium.” For Jodi, a decreasing N(t) represented an energy budget moving towards 

equilibrium, but in the sense that thing were going back to their original state (i.e., a budget 

before the positive forcing). Jodi conceive N(t) as a measure of energy imbalance as in 

measuring how far the budget was from its original radiative equilibrium. Jodi’s conception of 

energy imbalance did not involve N(t) as a difference between downward radiation and upward 

radiation. Jodi’s conception of N(t) shaped her understanding of radiative equilibrium. 

Jodi’s responses to the second part of the task suggest covariational reasoning abilities at a 

discrete version of the amounts of change level (L3) when her object of reasoning was the 

situation (i.e., how the energy budget evolves after a positive forcing). For this task, Jodi 

attended to the way R and A were changing between cycles as shown in Figure 2a. Specifically, 

Jodi attended to the amounts of change in R and A with respect to changes in time. 

It increased by two (A changes from 155 J/m2/s to 157 J/m2/s), and then it decreased by 

two (R changes from 395 J/m2/s to 397 J/m2/s) [pauses]. So, it is almost as if there was no 

change in temperature because I associate energy as kind of having a relationship with 

temperature. So, if the energy increases, then the temperature increases. But, in this 

scenario an equal change in energy was an equal change in output [simultaneously points 

at A and R] 

Jodi saw that any increase in A, or radiation from the atmosphere towards the surface, was match 

by the same increase in R, or radiation from the surface towards the atmosphere. She interpreted 

it in the following way: “the Earth would heat up because it got more energy [points at A], but 

then it would release it within the same cycle [points at R].” This suggests that the discrete 

approach to estimate the values of R, B, and A was shaping Jodi’s thinking about the situation. 

Jodi conceived time varying in discrete units, or cycles. For cycle i, A instantaneously increased 

by an amount iA (at the beginning of cycle i), while R instantaneously increased by an amount 

iR = iA at the end of cycle i. Following this reasoning, Jodi concluded that the surface energy 

was oscillating over time, which led her to conclude that T(t) was also oscillating over time. She 

represented this oscillatory variation by two periodic curves (Figure 3). Jodi drew two different 

periodic curves (arcs curve and dashes curve) because she was not sure whether the energy, and 

consequently the temperature, was increasing and decreasing within each cycle (arcs curve) or 

increasing within a cycle and instantaneously decreasing at the end of it (dashes curve). Her 

responses showed evidence of L2 covariational reasoning since she described the direction in 

which T(t) was changing over time (i.e., as t increases, T(t) increases and decreases). 

Interestingly, Jodi constructed a third graph for T(t) by attending to the variation in the 

amounts of change in the energy flows in the budget. She attended to the variation in the 

amounts of change in B with respect to changes in time (Figure 2a). Since B was increasing by 

smaller and smaller amounts, Jodi thought that T(t) was still oscillating, but its amplitude was 



decreasing between cycles. Jodi probably saw the decreasing increments in B as consistent with 

her idea of a budget returning to the original radiative equilibrium. She represented this quasi-

periodic variation by drawing a quasi-periodic curve whose arcs were decreasing in size (Figure 

3). Her response and graph suggest that Jodi, in a way, was reasoning about how T(t) was 

changing in relation to time. Since she attended to the variation in amounts of change, I consider 

Jodi’s covariational reasoning a version of L3, which was shaped by a discrete conception of 

time variation. Notice that her L3 covariational reasoning led her to conclude that T(t) was 

decreasing over time (i.e., the planet’s surface was cooling down). This may become an obstacle 

to understand the link between CO2 pollution and global warming. 

 
Figure 3. Jodi drew three different curves for T(t): two periodic curves and one quasi-periodic curve 

 

Conclusions 

The study’s findings suggest that Jodi’s covariational reasoning mediates her understanding 

of concepts related to global warming. Covariational reasoning at the direction of change level 

(L2) appears to facilitate the understanding of the budget moving towards radiative equilibrium 

after a positive forcing by CO2. This is a foundational understanding for introductory 

mathematical models for global warming since it highlights the impact of CO2 pollution over the 

planet’s flow of heat. Jodi’s case also shows the importance of developing covariational 

reasoning at the amounts of change level (L3) by using the situation as object of reasoning. 

Without this connection, L3 covariational reasoning can be of little use to understand global 

warming. Moreover, L3 covariational reasoning based on a discrete conception of variation can 

led to misunderstanding regarding the energy budget. In the case of Jodi, her discrete L3 led her 

to conclude that the planet was cooling down after a forcing, which contradicts the link between 

CO2 pollution and global warming. Additionally, Jodi did not make use of N(t) to construct the 

graph of T(t). This suggests that Jodi did not see N(t) as a measure of the rate of change of T(t). 

This may be explained by Jodi’s inability to reason about co-variation at the rate of change levels 

(L4 or L5). Another explanation involves Jodi’s conception of N(t). She did not see N(t) as a 

difference between downward radiation and upward radiation. Without such understanding, it is 

unlikely to see the relationship between N(t) and T(t). Also, her conception of N(t) led her to 

think that the planet’s surface was cooling down. This contradicts the long-term impact of CO2 

emissions on the planet’s average surface temperature. 
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