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This paper reports a methods-building project that seeks to make inferences about mathematics 
instructors’ teaching practices from their exams. We adapt and revise a framework by Tallman 
et al. (2016) and expand its applicability across the undergraduate curriculum, beginning with a 
sample of seven exams from early-career mathematics instructors. We describe the rationale for 
the adaptation process and patterns of differences between exam sets. Future work includes 
coordinating this analysis with results from other data sets from the same instructors. 
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This paper is part of a larger research project that seeks to detect changes in the teaching of 
individual instructors. To accomplish that, we are working to develop and coordinate methods 
that capture aspects of instructors’ teaching from diverse data sets including syllabi, classroom 
video, instructor and student surveys, and classroom artifacts such as assessments. We expect 
that these data sources capture different aspects of instructors’ teaching, and they vary in how 
invasive or expensive they are to collect and analyze. Rather than hoping to argue that one of 
these data sources and methods is best, we seek to understand the affordances of each method 
and the kinds of questions that are appropriate for each for the purposes of detecting change 
through professional development. Additionally, we hope to help clarify the desired outcomes of 
professional development, the change trajectories of participants, and the kinds of evidence that 
demonstrate that change is occurring. The results of this project could be used to help assess and 
improve professional development for mathematics instructors, which may in turn support the 
shift towards active and inquiry-based pedagogies advocated by professional organizations for 
collegiate mathematics instructors (CBMS, 2016). 

This paper focuses on course exams to ask the following question: What can an instructor’s 
exams tell us about that person’s teaching? Exams are generally high-stakes assessments, so 
presumably they represent the values, beliefs, practices, and theory-in-use (Argyris, 1976) of the 
instructor who authored them (Black & Wiliam, 1998). However, timed exams also put 
constraints on the kinds of activities that are possible for students, so we do not expect exams to 
capture all of an instructor’s perspective in general. Exams are easy to collect; they are also 
authentic artifacts in the sense that they are created as part of the course, for the students. Thus, 
we articulate the detailed research question: 

• Can we build or adapt a coding scheme that detects patterns and differences among 
instructors’ exams in order to support inferences about their teaching? 

This phase of the project is methods-building, so this paper emphasizes the development of a 
scheme for coding exam items from undergraduate mathematics courses across the curriculum.  
We include some results from coding of a small study sample as evidence that the resulting 
scheme captures patterns and differences among instructors’ exams that in turn may offer 
evidence about their instructional choices. 

Later stages of this program could develop a theoretical perspective on the aspects of 
teaching and their hypothesized relationship to professional development, but we are not yet at 
the stage where we can articulate such a framework. Instead, we seek to develop methods that 
focus our attention on aspects of instructors’ teaching, seek patterns and connections within or 



across these data and methods, and use both our theoretical sensitivity as researchers and our 
experience as teachers and professional developers to identify potentially meaningful 
observations. 

Literature Review 
We are building a scheme for coding exams to learn about instructors’ perspectives on 

teaching, so we focus on the requirements that they make of students in exam items. Subsequent 
to this paper, we will coordinate this scheme with analyses of other aspects of these instructors’ 
practice, so our scheme must be independent of specific knowledge of other elements of the 
course or the students’ backgrounds, though it can depend on a coder’s more generic knowledge 
of undergraduate mathematics. 

We draw on work of Tallman et al. (2016) to summarize some prior research that has 
examined individual mathematical tasks. Li (2000) built a three-dimensional coding scheme to 
assess whether the item required one or more mathematical procedures, whether the item was 
purely abstract or set in an illustrative context, and what format and cognitive demand were 
required for a response. It is difficult to determine the grain size of a single procedure without 
information about the specific course context, but the other dimensions of this scheme align with 
our goals. Lithner (2004) focused on the potential student strategies for seeking a solution to an 
exam problem; our project focuses on what is expected of all students in common rather than on 
potential differences. Smith et al. (1996) and Anderson and Krathwohl (2001) produced coding 
frameworks that modify and update Bloom's taxonomy. Bloom’s taxonomy has been critiqued 
because the actual cognitive demand of any task depends on the individual student’s prior 
experience, but we accept that an instructor can have a well-defined intended cognitive demand 
for a task, and that a coder with mathematical expertise could assess this intent from the exam. 
Mesa et al. (2012) used Charalambous et al. (2010) to incorporate information about 
representations and metacognition in their coding framework. These dimensions align with our 
goals, but we focus on how they are required by the instructor rather than on possible student 
understandings and approaches they support. 

As part of a project to determine characteristics of successful programs in post-secondary 
calculus, Tallman et al. (2016) developed a scheme for coding individual items on Calculus I 
final exams, called the Exam Characterization Framework (ECF). The ECF has three 
dimensions: item orientation, which captures the cognitive demand required to respond 
successfully to the item; item representation, which captures representations and other objects in 
both the task and required response to the item; and item format, which captures the structure and 
scope of the expected response to the task. Consistent with their critique of prior work, we 
observe that the ECF aligns with our own approach except for its exclusive focus on calculus. 
They applied the ECF to a large corpus of exams from 2010/11 to develop a summary of the 
expectations of calculus courses, and they contrasted these exams with a sample from 1986/87 to 
describe the impact of 25 years of reform efforts. Based on this work, we determined to start our 
scheme-building process by trying to adapt or generalize the ECF to a broader context. 

Methods 
Our data set is the exams (or mastery quizzes) from seven instructors who had completed a 

professional development program for early-career mathematics instructors. We expect this 
population to exhibit a range of teaching behaviors, styles, and skill levels. This sample is small 
because we collected multiple other kinds of data, including classroom video, from the same 
instructors (not discussed here). These seven instructors are teaching abstract algebra, discrete 



mathematics or introduction to proofs, content courses for future elementary teachers, 
introductory statistics, or calculus II/III. The first author, who is the main coder, has the 
credentials to teach all of these courses and has experience teaching courses similar to 6 of them. 
The data set includes 208 items from 13 distinct assessments from these seven courses. 

The first author familiarized himself thoroughly with the ECF as described in Tallman et al. 
(2016) and then attempted to use his understanding of this framework to code the seven sets of 
exams, along the way adapting and revising the ECF into a new but related scheme. The goal 
was to develop a coding scheme that was applicable across undergraduate mathematics courses, 
that captured all aspects of exam items that seemed to speak to larger patterns in the instructor’s 
teaching, and that was articulated in an internally coherent way that supported reliable coding 
and distinction between codes. As he coded, the first author noted items for which his current 
understanding of the framework was not sufficient to assign definitive codes; he also noted 
aspects of items that were not captured by the codes. He later repeated this process and then 
compared the codes and comments as an indicator of intra-coder reliability. He then revised his 
interpretation of existing codes and defined new codes based on repeated comments; these 
revisions required overt articulations or re-articulations of the hierarchical structure of the codes 
in each dimension. Finally, he repeated this process of coding and revision until the framework 
and its interpretation stabilized. 

For two of these cycles and for the stable framework, the first author presented examples of 
coded items, rationales for changing the framework, and descriptions of the hierarchical structure 
of each dimension of the scheme to the second author as sense-making checks; these checks 
were an initial effort to establish face validity in our study context. These discussions 
emphasized consistency in interpreting individual code definitions and coherence and 
discrimination across the framework components. 

The Item Characterization Framework 
The resulting framework, which we call the Item Characterization Framework (ICF), 

contains three broad dimensions: item orientation, item format, and item components. These 
dimensions are analogous to those in the ECF, but include new categories and codes (Table 1). 

  
Table 1:  Dimensions, Categories, and Codes in the Item Characterization Framework 

Item Orientation Item Format Item Component 

Cognitive 
Demand 

Familiarity Certainty Breadth Format Formality Other Support Task/Response 

Remember Recreate Low Single Multiple 
choice/TF 

No support Neither Applied/Modeling 
context 

Recall and 
apply 
Procedure 

Adapt Medium Forked Fill in the 
blank 

Informal 
support 

Interpretation/ 
Context 

Symbolic 
representation 

Recall and 
reproduce 
argument 

New High Delineated Short 
answer 

Formal 
support 

Control/ 
Evaluation 

Verbal 
representation 

Understand   Open Long 
answer 

Unclear Both Graphical 
representation 

Apply 
understanding 

      Tabular 
representation 

Analyze       Statement 
(Thm/Dfn) 

Evaluate       Claim (Conj/Arg) 

Create       (Counter-) 
Example 



Item Orientation 
This dimension captures the assumed cognitive demand of producing a successful response 

to the item. The category Cognitive Demand uses an expanded version of Bloom’s Taxonomy. 
Recall and reproduce argument is the only novel code here; this code is analogous to Recall and 
apply procedure but applicable to the context of proof construction. 

The cognitive demand of a task depends heavily on the student’s past experience with the 
task (Anderson & Krathwohl, 2001). Both ECF and ICF assume that the coder holds an 
understanding of the generic undergraduate curriculum and student; in ICF, these assumptions 
are made explicit by coding how novel the coder believes the task to be for the intended student 
in Familiarity and their confidence in this assessment (and thus of Cognitive Demand), in 
Certainty. 

Item Format 
This dimension captures the structure of a required response. Breadth of Responses captures 

whether there is a single or multiple acceptable form(s) for a successful response, as well as 
whether that form is overt in the task statement for the student. Format of Responses captures the 
extent to which the structure of a successful response is provided for the student. Formality of 
Response captures the explicit requirements for justification and support for a successful 
response. Other Support captures the extent to which the item requires the student to corroborate 
conclusions with secondary evidence or metacognition (e.g., checking work). 

The ECF also has a dimension called Item Format that is significantly revised in the ICF. 
The ECF Item Format codes blend ideas of breadth, format, and support; additionally the ECF 
Item Representation code Explanation contained ideas that blended formality of support and 
other support with item components. Splitting and rearranging these ideas in this fashion 
represents the largest revision from ECF to ICF. The shift is from questions about the overt 
structure of the task and response to questions about how much of the structure of the task and 
response is made explicit or unknown for a student. 

Item Components 
This dimension captures the representations, objects, and statements in the item. These codes 

apply separately to both the task statement and the required response. For example, Statement is 
applied to tasks that contain a statement, such as a theorem or definition, whose truth-value is 
(framed as) known, while the same code applied to a response means that the student is required 
to produce such a statement. The Claim code is applied to tasks containing statements with 
unknown truth-value and to responses that require students to decide on the truth-value of a 
statement or to generate a statement with unknown status, such as a conjecture. 

Data and Results 
Tables 2 and 3 summarize the frequencies and ranges seen for the exams in this data set. 

Averages are computed from the percentages of each exam set, rather than from the total 
collection of items, to give the same weight to each participant. 

Comparing Courses 
Item Orientation and Item Format. To compare exams, we label each as average (within 

10% of the group average), or otherwise high/low frequency for each code. For example, P1 and 
P3 have low frequencies of items with single answers; P1 has correspondingly high frequency on 
questions with forked responses, while P3 is high on delineated and open items. Similarly, P1 



and P3 are both low in items asking students to remember declarative facts, but P1 is high in 
terms of asking students to reproduce arguments, and P3 is high in tasks that ask students to 
apply understanding or analyze. 

 
Table 2: Observed frequencies and ranges for Item Orientation and Item Format codes 

Item Orientation Item Format 
Code Average Min-Max Code Average Min-Max 

Remember 14% 0% - 36% Single 64% 16% - 100% 

Recall and apply proc 30% 0% - 66% Forked 22% 0% - 79% 
Recall and reproduce 
argument 

12% 0% - 47% Delineated 7% 0% - 36% 

Understand 0% 0% Open 7% 0% - 18% 
Apply understanding 38% 19% - 69% Multiple choice/ 

TF 
16% 0% - 38% 

Analyze 2% 0% - 8% Fill in the blank 11% 0% - 39% 

Evaluate 5% 0% - 20% Short answer 44% 11% - 62% 

Create 0% 0% Long answer 28% 2% - 74% 

Recreate 37% 7% - 79% No support 40% 0% - 93% 

Adapt 60% 21% - 93% Informal support 33% 3% - 57% 

New 3% 0% - 19% Formal support 27% 0% - 74% 

Low certainty 3% 0% - 14% Unclear 0% 0% - 3% 

Medium certainty 24% 2% - 46% Neither 87% 62% - 100% 

High certainty 73% 54% - 98% Interpretation/ 
Context 

1% 0% - 5% 

   Control/Evaluation 9% 0% - 38% 

   Both 2% 0% - 14% 

 
Table 3:  Observed frequencies and ranges for Item Component codes 

Item Components Task Response 

Code Average Min-Max Average Min-Max 

Applied 13% 0% - 46% 8% 0% - 32% 

Symbolic 71% 12% - 100% 64% 16% - 100% 

Verbal 15% 0% - 64% 12% 0% - 56% 

Graphical 15% 0% - 40% 12% 0% - 56% 

Tabular 9% 0% - 31% 6% 0% - 15% 

Statement 14% 0% - 38% 9% 0% - 46% 

Claim 33% 4% - 79% 33% 0% - 79% 

Example 8% 0% - 31% 16% 0% - 44% 

 
Of potential interest for detecting instructors’ authentic instruction practices (Gulikers et al. 

2004) through exams are the codes that capture uncertainty and open-ended tasks. In Table 4, we 
summarize the data by participant for four such codes or combinations: analyze, evaluate, and 
create (A+E+C); new; forked, delineated, and open tasks (F+D+O); and claim.  
 

Table 4: Observed frequencies for combined uncertainty/open-ended codes by course 
 P1 P2 P3 P4 P5 P6 P7 
A+E+C 5% 8% 28% 0% 7% 0% 0% 
New 0% 19% 0% 0% 0% 0% 0% 
F+D+O 84% 0% 80% 31% 29% 13% 12% 
Claim 79% 54% 48% 38% 4% 7% 36% 



 
Item Component. We separate the task and response component codes. Table 5 shows that P3 is 
high frequency in five Item Component subcodes, which is more than the other exam sets, and is 
also the only course to be high frequency for more student response subcodes than task codes. 

The ICF appears to capture the distinctive demands of teaching subfields of mathematics. P5 
is the statistics course, and it has the highest frequency of applied components. P1, P2, and P4 
are proof-based courses that have symbolic representations in every task and response; P2 and P4 
are introductions to proof, with high frequencies of theorem and definition statements in tasks. 
P3 and P6 are courses for pre-service elementary teachers with lower than average use of 
symbolic representations and higher than average use of graphical and geometric representations. 
The high frequency of Recall and apply procedure in P5 and P7 may encode the fact that they 
are lower-division, computational courses. 

 
Table 5: Item Component code frequencies (light/medium/dark represents low/average/high frequency) 

 

Discussion 
Our evidence tentatively supports the claim that the ICF also detects differences among 

teaching practices in similar courses. For example, P3 and P6 are both courses for future 
elementary teachers, but P3’s exams include more higher-order and open-ended summary codes 
in Table 4, and more item components, especially those required in the response, while P6 is 
average or below in each of these indicators. We suggest that P3 is asking more, or perhaps more 
authentic mathematics, of students than P6, which could indicate that its instructor holds a more-
developed teaching perspective. There are similar, if weaker, patterns of difference between P2 
and P4 (introduction to proofs, discrete) and P5 and P7 (lower-division, computational, applied).  

These analyses also highlight the ways P3, and to a lesser extent P1 and P2, are asking 
students to do mathematics that is potentially more authentic (Gulikers et al., 2004) on exams 
than P4, P5, P6, and P7. P1 accomplishes this by asking students to prove or disprove statements, 
P2 by asking students to work with new definitions, and P3 by asking students to evaluate 
arguments and to coordinate multiple goals simultaneously. The evidence and analysis above is 
consistent with the assertion that the ICF captures dimensions of teaching that are of interest to 
professional developers of mathematics instructors.  

We would predict that items that use different representations in their task and response 
would be more complex and demanding for students. Tallman et al. (2016) use statistical 
methods to determine if task components correlate with response components or other codes, but 



this kind of analysis is not possible on our small sample. In a larger sample, this might highlight 
another aspect of more-developed teaching practice. 

The next phase of the project will involve coordinating the analyses of these seven 
participants’ teaching using other data sets, including their syllabi, video recordings of their 
classrooms, and surveys of both the participants and their students, for which method 
development and coding have proceeded independently. Initial conversation indicates that these 
different data sets generally highlight a similar subset of courses as exhibiting valued teaching 
aspects, but these data will also highlight different aspects of their teaching, such as espoused 
theory (Argyris, 1976) from instructor surveys to contrast with theory-in-use from exams. 

We have not yet tried to code and test for inter-rater reliability. Thus far, reliability rests on 
three points of content validity. The first author re-coded the data repeatedly until the framework 
and codes stabilized, and justified codes and changes to the framework to the other researchers. 
Restructuring the item format dimension around epistemological questions in particular helped 
the team agree on their understanding of codes. Finally, the Certainty codes serve as a measure 
of confidence in the coding. The majority of items were coded as medium (24%) or high (73%) 
certainty. If higher certainty is desired, items coded as medium certainty could be resolved either 
by scanning the course textbook to see if the question was familiar or asking the instructor to 
complete a simple survey declaring the familiarity of each item on their exams. These 
approaches are both more invasive than simply collecting exams, but could be ways to gather 
this information easily in future rounds of data collection. Next steps for this project must 
include reliability testing across multiple raters. 

Thus far, claims about the utility of the ICF rest on the analysis of a small sample, which is 
intertwined with the researchers’ experience with professional development of mathematics 
instructors, including advocacy for active and inquiry-based pedagogies. The local goal is to 
develop a method for coding exams so that we can understand whether and how analyzing exams 
may be helpful to characterizing teaching. If this method proves useful, the larger goal is to 
detect change in the instructors who participate in these kinds of professional development. The 
target teaching outcomes for this kind of professional development are often broad; developing a 
measure that is focused on assessments and that can be applied widely across course topics may 
contribute to detecting change in dimensions not currently studied in other ways. We do not 
claim that an ideal exam is entirely higher-order cognitive tasks, but we do believe that high 
quality teaching would include requiring students to engage some higher-order tasks on exams 
and that ask students to work in uncertainty. We do not think that an ideal exam completely 
avoids symbolic representations, but we have valued those exams that avoid using only symbolic 
representations and that ask students to reason with multiple representations. We also need to 
connect the ICF to existing research to solidify these utility claims. 

Future research could explore these questions, some of which are analogous to those 
explored by Tallman et al. (2016). Are exams for courses other than calculus changing across 
time in the discipline? What correlations exist among the codes in the ICF (in a sample large 
enough for statistical analyses), and how do these correlations depend on course level/domain? 
To what extent are mathematics students asked to use and translate between multiple 
representations in their (high stakes, timed) assessments? With additional instructor data, how do 
instructors’ perspectives about their exams related to researcher analyses of the items, and what 
are the relationships between instructors’ stated values and their assessment practices? Using a 
coordinated and longitudinal data set from professional development, do changes in exams lead 
or trail other teaching changes in response to professional development? 
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