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Reasoning and proof are essential to mathematics, and surjective functions play important roles 

in every mathematical domain.  In this study, students in a transition to proof course completed 

tasks involving composition and surjective functions.  This paper explores students’ semantic 

understandings of surjective functions, both individually and in the context of composition of 

functions.  Most students demonstrated productive semantic understandings of surjective 

functions that allowed them to produce counterexamples and arguments for the truth of 

statements.  Furthermore, in the struggle of using the syntactic definition of surjective in a proof, 

some students used their semantic understanding to try to make sense of the definition.  This 

demonstrates the potential of students’ ability to reason semantically to build understanding of 

the syntactic definition and structure of proofs of surjective functions.   
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Reasoning and proof are fundamental aspects of mathematics on which mathematical 

teaching and learning should focus.  Weber and Alcock (2004, 2009), describe two distinct 

reasoning styles and approaches to proof production that they call semantic and syntactic.  

Semantic reasoners produce proofs through a focus on general understanding guided by 

examples, diagrams, or other informal explanations, and syntactic reasoners produce proofs 

mainly through deductive reasoning based on axioms, definitions, theorems, and standard proof 

frameworks (Weber & Alcock, 2004).  Although a mathematical proof is a syntactic product, 

understanding the proving process involves both types of reasoning.  Thus, “neither of these 

approaches should be used exclusively by students and both syntactic and referential [semantic] 

approaches to proving are necessary for proving competence” (Alcock & Weber, 2010, p. 96). 

Students typically encounter surjective functions for the first time in precalculus.  Although 

they are not necessarily emphasized at this level, surjective functions are important in upper-

division courses as bijections and isomorphisms permeate nearly every mathematical domain.  

My students consistently struggle with proofs of statements involving surjective functions, so as 

a step toward understanding why, this paper addresses the following research questions: In what 

ways do students approach proofs of statements involving surjective functions?  What are 

students’ semantic understandings of surjective functions?   

Literature Review 

Both semantic and syntactic reasoning present students with opportunities and difficulties in 

proof production.  Semantic reasoning can provide a basis for and support the development of a 

syntactic proof or counterexample by suggesting a main idea or underlying structure (de Villiers, 

2010, Moore, 1994; Raman, 2003; Weber & Alcock, 2004).  However, students often do not 

make these connections due to inaccurate or incomplete semantic understanding (Moore, 1994; 

Tall & Vinner, 1981) or difficulty relating their semantic understanding to a syntactic definition 

or proof (Raman, 2003; Weber & Alcock, 2009).  Additionally, students may use semantic 

reasoning as a substitute for syntactic proof (Harel & Sowder, 1998, 2007). 

When students have such difficulties with semantic reasoning, syntactic reasoning can help 

them produce proofs even if they do not fully understand them.  Understanding may then 



develop through students’ reflection on how syntactic proofs relate to their semantic 

understanding of the concepts involved (Weber & Alcock, 2009).  On the other hand, students’ 

struggles with syntactic reasoning, such as use of imprecise or incomplete definitions (Harel & 

Sowder, 2009; Vinner, 1983) or failure to use definitions to structure proofs (Harel & Sowder, 

2009; Moore, 1994) may limit their ability to construct and understand mathematical proofs.  

Both semantic and syntactic reasoning are important in proving, and the affordances above 

suggest that students may come to understand proving and proof in one of two ways: by using 

semantic reasoning to build syntactic proofs, or by making sense of syntactic proofs through 

reflections on their semantic understanding (Weber & Alcock, 2009).  

Method of Inquiry 

The data in this paper come from a larger study that investigates students’ proofs of 

statements involving relations and functions.    

Participants 

The participants were ten undergraduate students at a public university in Ohio enrolled in a 

transition to proof course.  Six students were secondary mathematics education majors, and one 

each was a computer science, meteorology, mathematical statistics, and applied mathematics 

major.  Although the course was intended for sophomore level students who had not taken a 

proof-based mathematics course, only one participant met these criteria.  The other students were 

juniors and seniors with varied levels of experience with proof-based mathematics.       

Course Structure 

The transition to proof course was an inquiry-based learning course taught by the author of 

this paper.  The topics in the course were: problem solving, logic, set theory, proof techniques, 

counting, induction, relations, orderings, functions, and cardinality.  Students read about and 

completed ungraded pre-work on new topics before class.  In class, they discussed the pre-work 

in small groups, followed by whole class discussions and ungraded student presentations.  

Students had graded post-work due weekly, which could be discussed with others, but write-ups 

were to be individual.  In addition, there were four quizzes, a midterm, and a final exam in class.     

Data 

The data come from the assigned coursework in the transition to proof course.  Although the 

students completed a variety of tasks involving surjective functions, this paper focuses 

specifically on the three tasks below involving composition and surjective functions.  Overall, 

three weeks of class were spent on functions, with four days including study of surjective 

functions.  Surjective functions were introduced the first day on functions with the following 

definition from Schumacher (2001): 

A function 𝑓: 𝐴 → 𝐵   is said to be onto if for each 𝑏 ∈ 𝐵, there is at least one 𝑎 ∈ 𝐴 for 

which 𝑏 = 𝑓(𝑎).  In other words, 𝑓 is onto if the codomain and the range of 𝑓 are the 

same set.  

In this definition, I consider the first sentence the syntactic definition and the second sentence a 

semantic understanding of the definition.  The next three days of class focused on injective and 

surjective functions, composition of functions, and their interactions.  Students constructed 

examples and explored conjectures on the composition of functions with both finite and infinite 

domains satisfying varied combinations of injective and surjective.  The tasks examined in this 



paper were explored as pre-work and in class before being assigned as post-work and on in-class 

assessments, but complete solutions were not provided.   

Task 1. Task 1 was on a post-work assignment due on the fifth day of study of functions.   

True or False?  If true, prove it; if false, provide a counterexample. 

Let 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 be functions.  If the composite function 𝑔 ∘ 𝑓: 𝐴 → 𝐶 is onto, 

then 𝑔 is onto 𝐶.   

Task 2.  Task 2 was on an in-class quiz, four class days after the due date for the post-work 

containing Task 1.   

Let 𝐴, 𝐵, and 𝐶 be nonempty sets and 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 be onto functions.  State 

the domain and codomain of 𝑔 ∘ 𝑓.  Prove that 𝑔 ∘ 𝑓 is onto its codomain.   

Task 3. Task 3 was on the final exam, four class days after the quiz containing Task 2.  

True or False?  If true, prove it; if false, provide a counterexample. 

Let 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 be functions.  If the composite function 𝑔 ∘ 𝑓: 𝐴 → 𝐶 is onto, 

then 𝑓 is onto 𝐵.   

Results 

Task 1  

Every student correctly identified the statement in task 1 as true.  Seven of the ten students used 

an indirect proof, but it was often unclear whether they were using proof by contradiction or 

contrapositive.  Not a single student used the word “contradiction,” and each indirect argument 

concluded 𝑔 ∘ 𝑓 was not onto, many starting similarly to “if 𝑔 is not onto, then 𝑔 ∘ 𝑓 is not onto 

because….”  Most subsequent arguments were based on semantic understandings of surjective 

functions instead of the syntactic definition.  It is unclear what provoked the use of an indirect 

proof strategy, but it aligned almost naturally with their semantic reasoning in this context. 

The students demonstrated five different semantic understandings of surjective functions, 

some specifically in the context of composition, and some which overlapped.  Two students’ 

arguments included diagrams such as those discussed in Task 3 below.  Non-surjective functions 

in the diagrams are represented with an element in the codomain that is not in the range.  

Additionally, two students’ arguments expressed this idea in words, specifically speaking of 

mapping elements:   

Assume 𝑔 is not onto.  If 𝑓 is onto 𝐵, then all the elements in 𝐵 can be mapped back to 𝐴.  

When we map 𝐵 to 𝐶, not all of the elements of 𝐶 can be mapped back to 𝐵.  Since 𝐵 is 

not onto 𝐶, 𝐴 cannot be onto 𝐶.  Therefore 𝑔 must be onto 𝐶.  

Another student argued similarly to the students above in the language of codomain and range: 

If 𝑔 ∘ 𝑓 is onto, is 𝑔 onto?  True.  This is true because if 𝑔: 𝐵 → 𝐶 had an element show 

up in its codomain that was not in the range, then the mapping from 𝐴 → 𝐶 would contain 

that same element in its codomain and not its range.  

Two students argued on the consequences of 𝑔 be the last function applied in the composition:  

Suppose not, that 𝑔 is not onto 𝐶.  Therefore 𝑔 ∘ 𝑓 would also not be onto 𝐶. This is 

because 𝑔 is the highest level function that provides the final range of the entire 

composite, and if 𝑔 can’t reach all of 𝐶, then the composite 𝑔(𝑓(𝑥)) certainly won’t 

either.  

Finally, three students used the idea that 𝑔 and 𝑔 ∘ 𝑓 have the same range when 𝑔 ∘ 𝑓 is onto: 

True because the range of 𝑔 will also be the range of 𝑔 ∘ 𝑓.  So, if  𝑔 ∘ 𝑓 is onto, then that 

means 𝑓 has its domain and range, the domain of 𝑔 that has the same elements as range 



of 𝑓 will have a range also, and that range of 𝑔 of those elements will be the same range 

of 𝑔 ∘ 𝑓.   

Only two students used the syntactic definition of surjective on task 1.  Each student gave a 

correct proof, with one being a direct proof and the other a proof by contrapositive.   

Task 2 

Nine of the ten students used a direct proof strategy on Task 2, and six students attempted to 

use the syntactic definition of surjective function.  This approach was in stark contrast to 

students’ approach to Task 1.  However, in attempting to follow the forward structure of a 

prototypical direct proof – start with the assumptions and use definitions to work to the 

conclusion – students missed the backward structure of the definition of surjective and were 

unable to use it appropriately to structure their proofs.  Each proof attempt started in the domain 

of 𝑔 ∘ 𝑓 and moved toward the codomain as in this example:  

Let 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, and 𝑐 ∈ 𝐶.  Note (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)).  Since 𝑓 is onto, ∀𝑏 ∈ 𝐵, 

there is an 𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏.  Furthermore, since 𝑔 is onto, ∀𝑐 ∈ 𝐶, ∃𝑏 ∈ 𝐵 such 

that 𝑐 = 𝑔(𝑏).  Suppose (𝑔 ∘ 𝑓)(𝑎).  (𝑔 ∘ 𝑓)(𝑎) = 𝑔(𝑓(𝑎)) = 𝑔(𝑏) = 𝑐.  Hence, 𝑔 ∘ 𝑓 

is onto. 

For an analysis of the difficulties that lead to this type of proof, see Epp (2009).   

Four of the students who used a version of the syntactic definition also used semantic 

reasoning in their proof attempt, as illustrated in the following example: 

Let 𝑎 ∈ 𝐴.  Since 𝑓 is onto, ∃𝑏 ∈ 𝐵 such that ∀𝑎 ∈ 𝐴, 𝑓(𝑎) = 𝑏.  Every value in 𝐵 is 

mapped to.  Similarly with 𝑔, ∀𝑐 ∈ 𝐶, ∃𝑏 such that 𝑔(𝑏) = 𝑐.  And since all values in 𝐵 

are mapped to, and 𝑔 is also onto, all values in 𝐶 get mapped to.  𝑔 ∘ 𝑓 is onto 𝐶.   

Finally, four students used semantic arguments only – three based on all elements in the 

codomain of surjective functions getting mapped to, and one cardinality argument 

presumably based incorrectly on surjective functions having the same codomain and range.   

Task 3 

Every student correctly identified the statement in Task 3 as false and attempted to construct 

a counterexample using a diagram to represent the sets and functions as in Figure 1:  

  

 
Figure 1. Sample counterexamples for Task 3 

 

Three students provided a diagram only, although two of these students circled the element in B 

that was in the codomain of 𝑓 but not the range.  Four students accompanied their diagram with 

some version of the statement “𝑔 ∘ 𝑓 is onto, but 𝑓 is not onto.”  The other three students 

included explanations with their diagrams.  One student used the syntactic definition of 

surjective and reasoned semantically about mapping elements in their explanation:  



Assume 𝑔 ∘ 𝑓 is onto, this means for each 𝑐 ∈ 𝐶, there is at least one 𝑎 ∈ 𝐴 for which 

𝑐 = 𝑔 ∘ 𝑓(𝑎).  This means each 𝑐 must map to a 𝑏 ∈ 𝐵 so 𝑐 can map to 𝑎.  But there does 

not need to be an 𝑎 ∈ 𝐴 for which 𝑏 = 𝑓(𝑎) for every 𝑏 as long as there is a path from  

𝑐 ∈ 𝐶 to 𝑎 ∈ 𝐴.   

This student’s diagram was similar to the diagram on the right in Figure 1.  The other two 

students used only semantic reasoning with their diagrams, with one student arguing that there 

was an element in 𝐵 that was “unmapped by any element in 𝐴” and the other student using an 

argument based on the cardinality of 𝐵 being greater than the cardinality of both 𝐴 and 𝐶.  

Although each student’s counterexample correctly showed that 𝑔 ∘ 𝑓 was onto and that 𝑓 was not 

onto, 𝑓 and/or 𝑔 were not functions in half of the students’ counterexamples, as is shown in the 

example on the right in Figure 1.           

 

Discussion 

The discussion will focus on two promising results: (1) Most students exhibited valid and 

useful semantic understandings of surjective functions (2) Some students tried to use their 

semantic understanding to make sense of the syntactic definition of surjective.   

Semantic Understanding of Surjective Functions 

  Every student in this study demonstrated at least one semantic understanding of surjective 

functions, notably, some form of the diagram in Figure 1.  Eight students exhibited at least one 

other semantic understanding.  For the other two students, one used diagrams on every task, 

displaying no other semantic or syntactic understandings, and the other used the syntactic 

definition on Tasks 1 and 2.  Overall, the students’ semantic reasoning about surjective functions 

was correct and useful in arguing for the truth of statements and constructing counterexamples.  

In addition to the diagram the students exhibited the following semantic understandings of 

surjective functions: having the same codomain and range, and all elements in the codomain 

being mapped to.  Additionally, students easily negated these concepts for semantic 

understandings of non-surjective functions: diagrams with unmapped elements, elements in the 

codomain not being mapped to, and unequal codomains and ranges.  Although these are simply 

different representations of the same concept, only one student demonstrated all three semantic 

understandings.  It would be interesting to see if students could recognize and articulate the 

connections between these semantic understandings.   

Finally, the students reasoned semantically about surjective functions specifically in the 

context of composition, including: considering the impact of which function was applied last in 

the composition; using the fact that 𝑔 and 𝑔 ∘ 𝑓 have the same codomain; using diagrams 

representing both surjective functions and composition; and arguing using cardinality as 

mentioned above in Task 3.  

Connecting Semantic and Syntactic Reasoning 

On Tasks 1 and 3, only one student used both semantic and syntactic reasoning about 

surjective functions, but most students demonstrated useful semantic understandings on which 

they could build.  However, on Task 2, as six students struggled to use the syntactic definition of 

surjective, four of them included semantic reasoning in their proofs to try to make sense of and 

connect to the syntactic definition.  With more time and practice, these students’ semantic 

understandings have the potential to be valuable in helping them understand the syntactic 

definition and structure of proofs of surjective functions.   
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