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This preliminary study provides a framework to analyze the extent and nature of (co)variational 

and quantitative reasoning in written curriculum. In order to test and refine our framework, we 

examined both the narratives and worked examples in calculus textbooks on lessons dealing with 

the topic of functions. We present examples from those textbooks to illustrate the categories of 

our framework. We conclude with questions concerning potential areas to improve our 

framework. 
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Over the past couple decades, researchers have studied students’ quantitative and 

covariational reasoning – the cognitive activities in which students conceive of measurable 

attributes varying in tandem (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002) – and have categorized 

specific forms of reasoning. They argue its importance to understanding numerous K-12 topics 

(Carlson et al., 2002), and yet “many popular U.S. textbooks do not emphasize or support 

students in conceptualizing quantities and viewing function formulas and graphs as representing 

how two varying quantities change together” (Thompson & Carlson, 2017, p. 457). Paoletti, 

Rahman, Vishnubhotla, Seventko, and Basu (in press) have started analyzing graphs used in 

STEM textbooks and journal articles. Thompson and Carlson (2017) and Mesa and Goldstein 

(2014) reported how secondary level precalculus textbooks addressed the conception of function 

and inverse trigonometric function, respectively, in their textbook reviews. However, we were 

unable to find any textbook analysis frameworks that attend to the degree to which textbook 

narratives and worked examples provide students with the opportunity to conceptualize 

quantities or reason (co)variationally. 

In this report, we describe our attempt to create such a framework. To do so, we adapt two 

cognitive-focused categorizations – Moore and Thompson’s (2015) shape thinking constructs for 

graphs and Thompson & Carlson’s (2017) variational and covariational reasoning framework 

into categorizations appropriate for analyzing static curricular materials. In order to test and 

refine our framework, we analyzed calculus textbooks sections readily available to us. We 

specifically analyzed the introductory material to calculus textbooks (i.e., the pre-calculus topics 

the authors included) because it provides insights into the conceptions of graphs, functions, etc. 

the textbook authors believe are foundational for students to have before entering calculus. In 

this paper, we introduce the framework with specific examples from our analysis.  

Background and Rationale 

Two main sources – shape thinking constructs (Moore & Thompson, 2015) and the 

framework for variational and covariational reasoning (Thompson & Carlson, 2017) – informed 

our construction of a framework that enables users to analyze the narratives and worked 

examples when textbook authors explain, define, or use terms, expressions, formulas, and 

graphs. Firstly, as we describe in more detail when introducing the framework, we adapt the 

shape thinking construct to analyze the extent to which the narratives and worked examples 

provide students with opportunities to develop quantitative and covariational reasoning. 



Secondly, Thompson and Carlson’s (2017) frameworks for variational reasoning and 

covariational reasoning enabled us to distinguish between various levels of covariation in the 

narratives and examples provided in the curriculum. We also benefit from other research (i.e., 

Carlson & Oehrtman, 2005; Cooney & Wilson, 1993; Confrey & Smith, 1994) to construct our 

framework. The structure in which those researchers provided various levels of understanding 

functions (i.e., correspondence vs. process/covariation view of functions) was useful in providing 

a way to analyze algebraically and geometrically defined functions in the narratives to determine 

how they promote opportunities for students to understand and use functions as values of two 

variables or quantities covarying.  

Researchers have demonstrated that textbooks have significant influence on student learning 

and teacher practice (Begle, 1973; Schmidt, McKnight, & Raizen, 1997; Kilpatrick, Swafford, & 

Findell, 2001; Stein et al., 2007; Valverde, Bianchi, & Wolfe, 2002). For example, Kilpatrick et 

al. (2001) stated that “what is actually taught in classrooms is strongly influenced by the 

available textbooks” (p. 36). In particular, Carlson, Oehrtman, and Engelke (2010) showed a 

positive influence of a curriculum (i.e., Precalculus: Pathways to Calculus) on students’ 

productive understanding of functions. They reported that students who completed a curriculum 

focused on quantities and their covariation scored significantly higher on the Precalculus 

Concept Assessment at the end of the course than at the beginning. However, given the important 

role of textbooks in students’ learning and classroom instruction, there is limited investigation 

regarding how (co)variational reasoning is promoted in textbooks. Hence, we decided to develop 

a framework to analyze curriculum materials in order to determine the extent and nature of 

(co)variational reasoning provided students in the narrative and worked examples.  

Framework 

 We had two main categories in our framework: static and emergent. We illustrate each of 

these categories along with examples from five calculus textbooks we investigated.    

Static 

We use the term static to refer to any instances of narratives or worked examples that do not 

reference quantities and relationships among them in ways that entail those quantities1 varying. 

For example, we code things as static when they entail instances that provide students images of 

variables and formulas based on perceptual associations among visual shape, analytic form, and 

perceptual features. Static instances encountered in the narratives and worked examples during 

our initial work fell into several categories (see Table 1). 

Perceptual Associations. One category is what we call perceptual associations. This 

category has subcategories (i.e., form-name, form-shape, shape-name, and property-shape 

associations). Form-name associations involve perceptual associations between an analytic form 

and a function class terminology (e.g., linear, quadratic, or exponential). We adapted this 

particular category from Moore and Thompson’s (2015) shape thinking construct to account for 

representations that were not graphs but still seemed associated with a particular form of an 

equation. For example, the following description of linear function was provided based on its 

analytic form without giving attention to an invariant relationship between the variables x and 

f(x) that change together: A function of the form f(x)=ax+b is called a linear function (Larson & 

Edwards, 2010, p. 24; Rogawski, 2012, p. 13). Form-shape associations involved perceptual 

                                                 
1 We use quantities here to refer to both a quantity’s magnitude and a quantity’s value. We return 

to this idea in the discussion section.  



associations between an analytic form and shape of graph. For example, Johnston & Matthews 

(2002, p. 20) describe “a nonvertical line in the Cartesian plane, or (x, y) plane, can be described 

by an equation of the form y=mx+b” with little or no attention to the coordinate system or axes’ 

scales and no attention to the invariant relationship between variables x and y as they vary. We 

also recorded instances as form-shape associations when the narratives provide a perceptual 

association between a change in a parameter in the analytic form and a change in the shape of 

graph. For example, Edwards and Penney (2014) stated “[the] size of the coefficient a in Eq. (9) 

[y=ax2] determines the ‘width’ of the parabola; its sign determines the direction in which the 

parabola opens” (p. 18). Shape-name associations involve perceptual associations between the 

shapes of graphs (e.g., “line” or “curve up”) and a specific function class terminology or name of 

a mathematical object. For example, Steward (2008) stated, “When we say that y is a linear 

function of x, we mean that the graph of the function is a line” (p. 24). Property-shape 

associations involve perceptual associations between the shape of graph and a feature of the 

graph (e.g., slope). For example, Rogawski (2012) provided a pair of parallel lines on a Cartesian 

coordinate axis that were not scaled and labeled, and stated that “[l]ines of slopes m1 and m2 are 

parallel if and only if m1 = m2” (p. 14–15)—with no attention to changes in one variable with 

respect to changes in another variable by considering the axes’ scales or orientations. 

 
Table 1. Framework for coding the extent and nature (co)variation provided in the narrative of a lesson 

Static Emergent 

 Variation Covariation 

Perceptual associations 

• Form-Name Associations 

• Form-Shape Associations 

• Name-Shape Associations 

• Property-Shape Associations 

Variable as unknown 

Correspondence 

Continuous  

Gross 

Discrete 

Continuous  

Gross Coordination of Values 

Coordination of Values 

 

 

Variables as Unknown. A second category of static, named variables as unknown, involves 

presenting a variable as having a fixed unknown value of a quantity or being only a visual 

symbol that is not varying in the way Thompson and Carlson (2017) categorized as “no 

variation” and “variable as symbol.” One example in Stewart (2008) is to “express the cost [C] 

of materials as a function of the width of the base” of a rectangular storage container (p. 15). In 

the solution, they note w and 2w as “the width and length of the base, respectively, and h be the 

height” and “the area of the base is (2w)(w)=2w2” without considering h or w as varying. 

Furthermore, they use these variables to write an equation for C, also indicating a treatment of C 

as an unknown variable whose unique value needs to be computed.  

Correspondence. We used the code correspondence, the third category under static, when 

the narratives provide instances in which there exists an established static link among numbers in 

sets, but there is no consideration of either the covariation of variables or the dynamic 

relationship between number of sets (Cooney & Wilson, 1993; Vinner & Dreyfus, 1989). We 

also coded instances as correspondence when they simply provide a rule for students to calculate 

a unique value of a variable or quantity by using any given value of another variable or quantity 

(Confrey & Smith, 1994). For example, Edwards and Penney (2014) provide the following 



definition of a function: “A real-valued function [originally bolded] f defined on a set D of real 

numbers is a rule that assigns to each number in x in D exactly one real number, denoted by f(x)” 

(p. 2). This definition is common across all the textbooks we investigated. These definitions do 

not provide a process view of function of how input values covary with output values, 

emphasizing the change over a continuum of values (Carlson & Oehrtman, 2005).  

Emergent 

The other main category in our framework, named emergent, identifies the narratives and 

worked examples representing various levels of varying and covarying quantities or variables 

based on Thompson and Carlson’s (2017) outline of levels of reasoning variationally and 

covariationally. We adjusted those levels to fit a textbook analysis and used them as our sub 

codes under emergent to determine the level of opportunities provided in a written curriculum for 

students to develop quantitative and covariational reasoning. We acknowledge that Thompson 

and Carlson included smooth and chunky distinction for both variational and covariational 

reasoning. For the purposes of this framework, however, we chose not distinguish between 

chunky and smooth continuous (co)variation. We made this decision because of the research 

(Castillo-Garsow, Johnson, & Moore, 2013) done to indicate that it is the student who conceives 

of a situation as either chunky or smooth, and in our preliminary analysis, we did not find a 

narrative or example that attempted to distinguish between the two.  

Covariational Reasoning (Thompson & Carlson, 2017). The other part of our framework 

under emergent outlines the level of opportunities to develop covariational reasoning. Gross 

coordination of values involves representing two variables or quantities whose values increase or 

decrease together without mentioning the individual values of variables as varying together in 

the narratives. For example, “As the independent variable x changes, or varies, then so does the 

dependent variable y” (Edwards & Penny, 2014, p. 3). Coordination of values involves instances 

of coordinating the values of one variable or quantity with values of another by providing 

specific and discrete pairs of values without providing the opportunity for students to conceive 

two variables or quantities whose value varies together in between those pairs of values. For 

example, a narrative in Edwards & Penny’s (2014) box problem wants students to “[s]tart by 

expressing the box’s volume V = f(x) as a function of its height x, and then use the method of 

repeated tabulation to find the maximum value Vmax” (p. 12). Here, the textbook offers various 

values for x and asks for students to find their corresponding values in order to determine when 

the value of V will be maximum. Continuous covariation involves instances providing a 

simultaneous and continuous change in the values of two variables or quantities. We do not have 

an example of this category; however, the narrative presented as an example for coordination of 

values would have been an example of continuous covariation if each of the functional 

representations was linked to a motion in a dynamic geometry software with a slider for students 

to change the value of x and simultaneously see the corresponding changes in the values of V 

continuously.  

Variational Reasoning (Thompson & Carlson, 2017). One part of our framework under 

emergent outlines the level of opportunities to develop variational reasoning (i.e., discrete, gross, 

continuous variation). Discrete variation involves presenting a variable or quantity in the 

narratives as taking specific values, but without providing the opportunity for students to 

conceive the variable or quantity whose value varies in between those specific values. Gross 

variation involves presenting a variable or quantity whose values increase or decrease without 

mentioning the specific values of the variable or quantity while increasing or decreasing in the 

narratives. Continuous variation involves presenting a variable or quantity whose values increase 



or decrease continuously. We do not provide examples from textbooks for each category of 

variational reasoning because they can be seen in the examples for covariational reasoning. For 

example, we can see discrete variation in Edwards and Penny’s (2014) box problem when they 

ask students to change the values of x to find the maximum values of volume. Here, the textbook 

provides the variable x as having specific values but without considering how its value varies in 

between those specific values.  

Discussion 

The aforementioned research upon which we base our framework describes how students 

think about quantities. We recognize that the frameworks we chose to adapt were cognitive in 

nature, and we contend that students conceptualize the written materials differently. For 

example, as Thompson and Carlson (2017) pointed out, “A variable’s variation comes from a 

person thinking [emphasis added], either concretely or abstractly, that the quantity whose value 

the letter [emphasis added] represents has a value that varies” (p. 425). In other words, we 

cannot know whether a student will interpret a variable provided in a written curriculum as 

varying, a letter that has a fixed value, or as a symbol. Nevertheless, the curriculum (including 

textbooks) students receive will influence how students think and learn. Thus, although there will 

invariably be discrepancies in the intended curriculum, the written curriculum, and what students 

interpret from the written curriculum, we argue certain narratives promote ways of reasoning that 

scaffold students in a way that supports reasoning covariationally. Hence, we are constructing a 

framework to determine which conceptualization students are likely to have based on what we 

see as evidence from written curricula. 

In our framework, we did not include the attention to the distinction between quantities’ 

values and quantities’ magnitudes because we have not seen any instances from textbooks 

representing this distinction. We note that the most sophisticated version of quantitative and 

covariational reasoning includes explicit attention to such difference (Ellis, 2007; Thompson & 

Carlson, 2017). Even though textbooks provide opportunities for students to develop productive 

ways of thinking about quantities that were identified in this study, we found it unfortunate how 

little evidence we found of curriculum materials intentionally supporting student development of 

sophisticated quantitative and covariational reasoning schemas. This missing emphasis in written 

materials may be a partial explanation for why researchers have identified students having 

difficulties with ideas such as rate of change (Carlson et al., 2002) 

To conclude this report, we identify some of the challenges we experienced in developing the 

framework. For instance, when coding the narratives and worked examples, we determined any 

instance the textbook seemed to promote (co)variational reasoning or to develop static meanings 

for quantities and variables. The units of analysis varied from phrases, to sentences, to whole 

paragraphs, to specific representations of mathematical objects (e.g., graphs, tables, etc.), but we 

would like to define parameters for our unit of analysis. We will provide examples of how our 

current unit of analysis influences how we code specific textbook examples and narratives. 

Lastly, we have been considering various methods of reporting and further analyzing the data 

(e.g., by textbook vs. by topic, international vs. national) and discussing affordances each offers.  
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