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This is an exploratory study into schema development of introductory topology students. We 
discuss Skemp (1987) and Dubinsky and McDonald’s (2001) definitions of schema and how they 
fit with Piaget and Garcia’s (1989) triad framework. We employed these theoretical instances on 
the idea of schema to analyze students’ responses to a final exam problem about a basis for the 
product topology on a product space. Our analysis indicates that the majority of the students 
were still in the beginning stages of schema development by the end of the semester in a topology 
course. 
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Theoretical background  
Advanced mathematics courses are often difficult for undergraduate students to transition 

into and research on student difficulties on advanced courses, especially on topology, are scarce. 
The overarching goal of this project is to build a theoretical framework investigating the 
differences between expert mathematicians and novice undergraduate students’ schemas in 
topology. We also would like to be able to investigate how students’ schemas develop (Piaget’s 
accommodation) and how interactions with peers and instructors affect that development. In this 
case study, we embark on this journey by examining undergraduate students’ proof attempts 
involving a basis for the product topology on 𝑋×𝑌.  

We will employ the idea of schema to gain more insight into the transition towards advanced 
mathematics, specifically towards topology. Although there are multiple definitions of schema 
currently in the literature, in this study we will mostly focus on Skemp’s version. In 1962, 
Skemp argued for the need of a valid learning theory that was developed in classrooms:  

 
A theory is required which takes account (among other things) of the systematic 
development of an organised body of knowledge, which not only integrates what has 
been learnt, but is a major factor in new learning: as when a knowledge of arithmetic 
makes possible the learning of algebra, and when this knowledge of algebra is 
subsequently used for the understanding of analytical geometry. (p. 133)  
 
Skemp (1962, p. 133) defines schema as the “organised body of knowledge” that integrates 

existing knowledge and is a major factor for new learning. Additionally, he defines and 
compares schematic learning to rote learning (non-schematic learning). Unsurprisingly, he finds 
that “Schematic learning has a triple effect: more efficient current learning, preparation for future 
learning, and automatic revision of past learning.” (p. 140)  

Skemp (1987) gives a more detailed definition of schema in his chapter, “The Idea of a 
Schema”. He describes a system where concepts are embedded in a hierarchical structure of 
other concepts, where levels in the structure are classifications of concepts. For example, a train 
can be classified as a mode of transportation and can contribute to one’s concept of 
transportation. We can also pair concepts together, giving a relation between them, which we can 
also classify. Additionally, we can look at transformations of concepts, which can be combined 
to make other transformations. What makes this hierarchical structure of concepts, relations, and 



transformations so deep and complex is the fact that these classifications are not unique, giving 
way to multiple hierarchical structures, which can be interrelated. When components of these 
conceptual structures come together to make a structure that would not be realized by only 
looking at the individual components, we call this resulting structure a schema. Skemp (1987) 
claims that a schema integrates existing knowledge, serves as a tool for future learning, and 
makes understanding possible. Without a suitable schema, students will have difficulty in 
understanding or making sense of new concepts. Skemp (1987) used topology in his work for the 
reason that “the relevant schema can be quickly built up, whereas most mathematical ones take 
longer.” (p. 30) Although this study focuses on a more advanced topology question than Skemp 
did, we still believe that topology offers ideal topics to observe schema development with since 
most students do not encounter topology until late in their undergraduate work.  

Another definition of schema is embedded in APOS Theory (Dubinsky & McDonald, 2001). 
Actions, processes, and objects are used to define a schema. Actions are external transformations 
of objects that become processes once internalized. After an individual becomes aware of a 
process and the transformations that can act on it, the process has become an object itself. 
Dubinsky and McDonald (2001) continue on to define schema: 

 
Finally, a schema for a certain mathematical concept is an individual’s collection of 
actions, processes, objects, and other schemas which are linked by some general 
principles to form a framework in the individual’s mind that may be brought to bear upon 
a problem situation involving that concept. This framework must be coherent in the sense 
that it gives, explicitly or implicitly, means of determining which phenomena are in the 
scope of the schema and which are not. (p. 3) 
 
Clark et al. (1997) discussed an application of Piaget and Garcia’s (1989) triad framework, 

Intra, Inter, and Trans, to the chain rule in Calculus. This triad is a theory for schema 
development within the context of APOS. Before a schema is coherent, it must go through these 
three stages. In the Intra stage, an object is thought of in isolation from other actions, processes, 
or objects. Once relationships are seen between the object and other actions, processes, objects, 
and schemas, the individual is in the Inter stage, also known as a pre-schema. In the Trans stage, 
a coherent structure begins to underlie the relationships from the Inter stage, and there now exists 
a schema for the original object in question.  

As an example, consider the development of a schema for a topology. Working purely within 
the definition of a topology and considering basic examples is in the Intra stage. The schema 
enters the Inter stage once connections between the definition and previous knowledge are made. 
This includes more complex examples and possibly basic proofs. Viewing a topology as how 
open sets are defined for a topological space and being able to apply that in more complicated 
proofs demonstrates ideas in the Trans stage. This triad will be used as a place to begin analyzing 
schema development for a proof in an introductory topology course. 

We view Piaget and Garcia’s (1989) triad framework as a continuous spectrum for 
developing a schema. Dubinsky and McDonald’s (2001) definition of schema overlaps with only 
the Trans stage since that is when a coherent structure appears. In comparison, Skemp’s (1987) 
definition of schema not only overlaps with the Trans stage, but all stages of the triad framework. 
In our view, an idea does not have to be fully developed or correct in order to be a part of a 
schema. Our research question for this project is “With respect to the triad spectrum, how 
developed are introductory topology students’ schemas for a basis for a topology?” 



Method 
This is a case study into introductory topology students’ thinking about a basis for a topology. 
Eleven final exams were collected and de-identified from a senior-level undergraduate topology 
class at a research university in the Southwest US. This study focuses on the first of the nine 
exam questions, shown in Figure 1. 
 

 
Figure 1. Question 1. Define and use the product topology on a product space.  

We chose this question for a couple of different reasons. First, it is structured such that 
students who are in-between the Intra and Inter stages of their schema development for a 
topology generated by a basis can still answer part a. Then part b requires students to be at least 
in the Inter stage of schema development. This question quickly reveals students whose schemas 
are still in the Intra stage.  

Compared to other questions on the exam, this problem is more consistent with content from 
a typical introductory topology class. It would be unusual if the product topology on 𝑋×𝑌 and 
the use of a basis did not appear in a beginning topology course, and therefore this problem is 
one that can be considered for use in future expansions of this study. This problem was also the 
first on the exam and therefore all of the students made an attempt on it. 

The data was initially coded by identifying the types of errors made in each part of the 
problem (see Table 1). We then went through a second round of coding for consistency and 
grouped the responses together based on these errors and attempted to analyze them with the 
triad spectrum.  

 
Table 1. Types of errors. 
Code Description Percentage of 

Students with Error 
B Left blank or contributed no original thoughts 9.1% 
IN Issues with notation 36.4% 
IL Issue of beginning proof with conclusion/other incorrect logical 

statement 
45.5% 

NB No reference to a basis 63.6% 
LC Lacking clarity 72.7% 
LL Lacking logical flow 18.2% 
LD Lacking direction 9.1% 

Results and Discussion 
The product topology on 𝑋×𝑌 can be defined using the collection 𝛽 = {𝑈×𝑉|𝑈 ∈ Τ! ,𝑉 ∈

Τ!} as a basis. The proof for part b involves three main components: 
A. Noting that all open sets can be written as a union of basis elements (this part may be 

considered part of the definition of a basis depending on how it was presented in class) 
B. Noting that the projection of a union is a union of projections 
C. Showing the projection map is an open map for basis elements  



We understand it is up to each instructor as to how detailed students’ proofs should be, but these 
three components should at least be noted somehow in the proof. Figure 2 gives an overview of 
the proof schema. The arrows in the figure indicate previous knowledge that is needed in order to 
complete parts of the problem. 
 

 
Figure 2. A proof schema for the problem. 

Seven of the eleven students did not use a basis to define the product topology on 𝑋×𝑌 and 
six of those seven students claimed that the topology on 𝑋×𝑌 is Τ!×! = {𝑈×𝑉|𝑈 ∈ Τ! ,𝑉 ∈ Τ!}. 
A typical response of this type is shown in Figure 3.  

The following argument demonstrates why this response cannot be the topology on 𝑋×𝑌 and 
why a basis is needed. Let 𝛽 = 𝑈×𝑉 𝑈 ∈ Τ! ,𝑉 ∈ Τ!  be the basis for Τ!×!. 𝑈!×𝑉! and 𝑈!×𝑉! 
are both elements of 𝛽 and therefore are also elements of Τ!×!. By the definition of a topology, 
(𝑈!×𝑉!) ∪ (𝑈!×𝑉!) is also an element of Τ!×!. Note, however, that the union is not of the same 
form as elements of 𝛽 and cannot be in 𝛽, as shown in Figure 4. So 𝛽 cannot be the entire 
topology on 𝑋×𝑌.  

Since the proof for part b depends on the use of a basis, the seven students who did not use a 
basis in part a were unable to write a complete proof for part b. They often showed component C 
of the proof but did not include components A or B. The students who had this type of response 
may not see the need for a basis, when it is appropriate to use one, or how to make use of it. 
There is a disconnect between this problem and the definition of a topology generated by a basis. 
Therefore these students’ basis schemas are, at best, in the Intra stage of schema development. 
They have not reached the Inter stage since they are unable to connect a basis with other 
knowledge. 

 



 
Figure 3. A response that is not past the Intra stage. 

 
Figure 4. A visual representation of the need for a basis. 

The four students who did make use of the basis had problems with incomplete proofs and 
notation. They would write the proof for basis elements only and then immediately jump to the 
conclusion of the proof without addressing components A or B of the proof. Such an example is 
in Figure 5. Whether or not the proof is considered to be correct depends on the instructor and 
the classroom norms. For this study, however, we are not as concerned about the validity of the 
proof as much as what it does (or in this case, does not) tell us about the student’s schema of a 
basis. The use of the word “basis” can be used as a substitute for component A of the proof, but 
we cannot assume that the student did or did not understand this. The same goes for component 
B, which may or may not have been considered trivial in the class. We can say that this student 
has reached the Inter stage of basis schema development since they could relate a basis with 
other actions, processes, and objects, but due to the minimal amount of details in their proof, we 
cannot make any conclusions past this stage about their level of understanding.  



 

Figure 5. A response that has reached the Inter stage. 

There were four students who had notational issues and nearly all students could have made 
their arguments more clear. An interesting example of this is in Figure 6. The student in this 
example incorrectly used 𝐴×𝐵 as their arbitrary open set of 𝑋×𝑌, yet still included component A 
of the proof by saying that 𝐴×𝐵 is a union of basis elements. This indicates that the student had 
an understanding of the need for component A in their proof schema, but they did not understand 
how to denote the arbitrary open set. The student has a coherent proof structure here, but their 
argument could be improved with some corrections in notation. This student’s response shows 
that they have reached the Trans stage, but there are still some notational gaps to fill in in their 
overall schema.  

 
Figure 6. A response that has reached the Trans stage. 



Concluding Remarks 
The three examples discussed in this study demonstrate three different places along the triad 

spectrum where student’s schemas could be. Even though this problem came from a final exam 
at the end of the semester, a majority of the students surprisingly were still `at the Intra stage or 
lower in their schema development for a basis. We cannot comment on why this is since we did 
not collect any data regarding the norms of the class that these participants were in. This also 
means that we cannot know what was considered to be trivial in the course, making it difficult to 
analyze student’s responses that are similar to Figure 5. These schemas may or may not include 
the components that were replaced with equivalent, but highly simplified, statements. We also do 
not know how much the instructor emphasized the need for a basis for certain topologies or 
whether or not the students had seen this problem on a previous homework assignment, both of 
which would affect the students’ schemas. 

The other limitation to this study is that it is impossible to physically see the schema of 
another person, so at best we can only make conjectures about participants’ schema 
development, especially since we analyzed written proofs. Interactions with participants will be 
more informative in future work.  

The next steps for expanding our project include interactions with the participants, data 
collection that occurs at the beginning and the end of a semester, and interactions between 
participants in either a partner or group setting. We hope to have participants explain their 
schemas out loud to us or a peer and to observe progress in the development of their schemas 
over time. We also will be asking a wider variety of questions over introductory topics to gain a 
better sense of which topics are more challenging for undergraduate students. 
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