
Modus Tollens in Modeling 
 

Jennifer A. Czocher Jenna K. Tague 
Texas State University Fresno State University 

The purpose of this paper is to present a case study of a mathematics major exhibiting logical 
reasoning to validate her mathematical model. The case study demonstrates how constructing a 
mathematical model can be construed as making an argument for its validity. 
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There is a plurality of views and foci on teaching and learning mathematical modeling (Cai et 
al., 2014). The cognitive view on modeling has focused on how the modeler transforms the 
nonmathematical problem into a mathematical one (Kaiser & Sriraman, 2006). Several 
frameworks have been introduced to capture this transformation and allow it to be finely 
analyzed according to modeling competencies (Blum & Leiß, 2007), prior mathematical 
knowledge (e.g., Stillman, 2000), prior real-world knowledge (e.g., Czocher, under review), and 
theories of metacognition arising from problem solving (e.g., Galbraith & Stillman, 2006; 
Panaoura, Gagatsis, & Demetriou, 2009). While prior analyses have explained a great deal of 
how productive and unproductive moves within the modeling process may be characterized, they 
are limited to examining only specific modeler moves within the modeling process. With respect 
to mathematical reasoning, these frameworks are limited to examining only the mathematics the 
modeler uses to set up, analyze, compute, or solve the resulting model which can usually be 
explained in terms of the mathematics content intended by the task writer. That is, these 
frameworks do not allow documentation of validating the model if the means to do so fall 
outside of the expected mathematics or modeling context. This paper presents a case study of 
how an individual might use logic to guide her use of mathematical content knowledge. We 
follow with a discussion of why students’ logic might have been overlooked in other frameworks 
and then discuss why an alternative lens for examining modeling behavior, especially of more 
advanced students, is promising for shedding light on similarities among modeling, problem 
solving, and proving.  

Background 
From a cognitive perspective, studying mathematical modeling means attending to the 

mathematical thinking that produces the model (Borromeo Ferri, 2007). Mathematical modeling 
is viewed as a process that transforms a question about the real world into a mathematical 
problem to solve (Frejd, 2013). The answer to the mathematical problem is then interpreted as a 
solution to the real world problem. This process is often represented as a cycle (e.g., Blum & 
Leiß, 2007), which is summarized in Table 1. Much of the research on modeling from the 
cognitive perspective focuses on the simplifying/structuring phase (identifying variables, making 
assumptions) and on the mathematizing phase (introducing conventional representational 
systems). Comparatively less research has focused on validating, which involves checking that 
the mathematical model is representative of the situation and that it is correctly analyzed (solved) 
mathematically. Validating is challenging to study because of how the modeler perceives and 
resolves cognitive conflict between their expectations of their model (e.g., predictions) and 
outcomes (e.g., empirical observations) (Czocher, 2014, 2015). Students may respond to 
cognitive conflicts in less-than-ideal ways (Goos, 2002). They may fail to notice that something 



is amiss, perceive difficulties that do not exist, provide an inadequate response, or even change 
the problem to suit their readily-available knowledge (Goos, 1998, 2002; Stillman, 2011). 
Indeed, some have observed that validating is a “uniform shortcoming” of students’ 
mathematical modeling because they do not reflect to improve their models at all (e.g., Blum & 
Leiß, 2007). However, some small amount of work has revealed that engineering undergraduates 
do engage in validating their models, typically through techniques like dimensional analysis, 
checking special and limiting cases, making comparisons to empirical results, and relying on 
number sense (Czocher, 2013). On the other hand, mathematics majors’ conditional reasoning 
has been documented, particularly as it relates to comprehending an argument (Alcock, Bailey, 
Inglis, & Docherty, 2014). The following analysis is an effort to begin to document and 
understand the reasoning mathematics majors use to validate their mathematical modeling work.  
 

Table 1 Indicators from the observational rubric to identify subprocesses in the MMC  (Czocher, 2016) 
Modeling 
Subprocess 

Definition Examples of Observed Student Activity 

Understanding Forming an initial idea about what 
the problem is asking 

Reading the task 
Clarifying what needs to be accomplished 

Simplifying & 
structuring 

Identify critical components of the 
mathematical model (i.e., create an 
idealized view of the problem) 

Listing assumptions or specifying conditions 
Identifying variables, parameters, or constants 
Operationalizing quantities or relationships  

Mathematizing Represent the idealized model 
mathematically 

Writing or speaking mathematical representations of 
ideas (e.g., symbols, equations, graphs, tables, .) 

Working 
mathematically 

Mathematical analysis Explicit algebraic or arithmetic manipulations 
Making inferences and deductions without reference 
to nonmathematical knowledge 
Changing mathematical reprsentation 

Interpreting Recontextualizing the mathematical 
result 

Speaking about the result in context of the problem 
or referring to units 
Considering if the result answers the question posed 

Validating Verifying results against constraints Implicit or explicit statements about the 
reasonableness of the answer/representation 
Checking extreme or special cases of variables, 
parameters, relationships, etc. 
Dimensional analysis of units 

Methods 
Qualitative data were generated via an individual task-based interview (Clement, 2000; 

Goldin, 2000). The tasks were a variety of modeling and application problems drawn from 
previous research (e.g., Ärlebäck, 2009; Czocher, 2016; Schoenfeld, 1982; Swetz & Hartzler, 
1991). The 10 tasks were sufficiently open to allow participants to select their own variables, 
assumptions, and solution techniques. The purpose of the interviews was to elicit participants’ 
mathematical thinking as they engaged in mathematical modeling; the interviewer did not guide 
participants to a solution, but intervened only to request clarification or to extend the task.  In 
this paper, we focus on a single case to illustrate a mathematics major’s reasoning on a 
conventional word problem. The case is illustrative of a mathematics major using clearly 
outlined logic despite arriving at a wrong answer. The data are presented and analyzed as a 
narrative, a “spoken or written text giving an account of an event/action or series of 
events/actions, chronologically connected” (Czarniawska, 2004, p. 17). To do so, we view the 
interview participant, Safi, as presenting an account her series of decisions during mathematical 
modeling.  



Safi was a senior mathematics major at a large southwestern university. She was enrolled 
in a vector calculus course and stated that her favorite subjects thus far were “linear algebra, 
hands down, and differential equations.” She was nearing completion of her mathematics 
requirements and was seeking secondary teacher certification. Safi had completed her first 
classroom internship in geometry at a local high school, but stated a preference for teaching 
algebra.  The following semester, before graduation, she was scheduled to do her student 
teaching in an algebra 2 classroom. Safi did not describe herself as good at mathematics. She 
said, “since being here [at university] I have struggled with like my math classes and everything 
but I’ve worked really hard to get even like the C’s I have gotten.” Safi valued the hard work she 
put into her classes, which fueled her drive to be a teacher, despite the fact that the higher level 
mathematics courses she didn’t “really see being useful, like the proof classes.” She elaborated 
that the content of the proof classes would not be something she used in her high school classes 
but that “maybe the different way of thinking” would be useful. 

Below, we present Safi’s work on the Turkeys & Goats problem (Czocher & Maldonado, 
2015) and analyze it in terms of the correctness of her response, her engagement in mathematical 
modeling, and the reasoning she used to arrive at her conclusions. The problem was: A nearby 
farm raises turkeys and goats. In the morning, the farmer counts 48 heads and 134 legs among 
the animals on the farm. How many goats and how many turkeys does he have? The problem is a 
word problem (see Gerofsky, 1996) that is ubiquitous in secondary school algebra textbooks and 
on standardized tests. The answer, 19 goats and 29 turkeys, can be obtained in a variety of ways 
including setting up a system of two equations in two unknowns. Because of Safi’s mathematical 
training and recent experiences in mathematics pedagogy, the task was well within her 
capabilities. In order to analyze Safi’s engagement in modeling, the observational rubric from 
Table 1 was applied. When Safi was observed, in speech or writing, to be carrying out one of the 
activities in the right-most column, her activity was coded with the corresponding modeling 
subprocess from the left-most column.  

Presentation of Safi’s Reasoning 
Safi began by reading the Turkeys & Goats problem aloud [understanding]. She then 

emphasized some information, “48 heads and 134 legs” which she repeated aloud and wrote 
down [simplifying/structuring]. She then explicitly identified what needed to be accomplished, 
“and then they’re asking how many of each animal” [understanding]. She narrated her reasoning, 
“48 heads means he has 48 animals in total because he wouldn’t have more heads than animals 
because that wouldn’t make sense.” In this statement, Safi engaged in both 
simplifying/structuring because she established the condition that 48 heads means 48 animals in 
total and validating because she was evaluating its sensibility. To carry out her validating, she 
used counterfactual reasoning (reasoning from a situation that doesn’t or can’t exist) to set up 
and evaluate a brief propositional logic argument positing a one-to-one correspondence between 
heads and animals. She assigned the variable 𝑥𝑥 to the number of turkeys and the variable 𝑦𝑦 to the 
number of goats [mathematizing]. She then wrote the two equations 𝑥𝑥 + 𝑦𝑦 = 48 and 2𝑥𝑥 + 4𝑦𝑦 =
134 [mathematizing], checking that “two legs per turkey will give you the amount of turkey” 
legs [validating]. Safi used elimination method to solve the system [working mathematically]. 
She obtained 𝑦𝑦 = 19 which she interpreted to mean “there should be 19 goats” [interpreting]. 
Then to obtain the number of turkeys, she computed 48 − 19 = 27 using the standard algorithm 
[working mathematically]. She wrote 27 turkeys [interpreting]. To check her work, she used 



standard algorithms to compute 2 × 27 + 4 × 19 = 134 [validating]. She obtained 130 for the 
left hand side. She asked “Am I allowed to ask you the amount of turkey legs?” 

Safi had arrived at a contradiction: her solution 19 goats and 27 turkeys did not yield the 
same number of legs set by the conditions in the problem statement. Her first recourse was not to 
doubt her computation but to doubt whether turkeys had 2 legs. The interviewer followed up by 
exploring whether 2 legs per turkey was a logical antecedent or logical consequence of 19 goats. 

Safi: I solved it with turkeys having two legs, but I am short 4 legs. 
Interviewer: You’re short 4 legs. And you are certain that they are turkey legs? 
Safi: No. But if turkeys have 2, then I am not sure. Well, ‘cause I solved it to where goats 

have the 19, there were 19 goats. 
Interviewer: Okay, so given that turkeys have 2 legs, there must be 19 goats. Is that what 

you’re saying? 
Safi: Yeas. Oh wait, wait wait. But okay wait. The goats here…they have 38 legs, and then 

[[talks quietly then laughs]]. Yeah, so given that turkeys have 2 legs, there should be 19 
goats. 

Safi continued this chain of logical reasoning to argue that given that turkeys have 2 legs, 
there must be 19 goats, so there have to be 27 turkeys. There can’t be 27 turkeys because 
27 × 2 = 54, meaning just turkeys alone would have 54 legs. Given that there are 19 goats and 
goats have 4 legs, they would have 76 legs. Altogether there would be 130 legs, which is too few 
legs. Safi “called into question” the assumption that turkeys have 2 legs. 

After a brief discussion about why Safi had chosen to use the operations + and × where and 
how she did to set up her system of equations, the interviewer extended the problem.  Instead of 
Turkeys and Goats, the interviewer posed a problem in which the farm had pigs and goats, with 
48 heads and 134 legs. The resulting system of equations was inconsistent. Safi set up the 
equations, solved them via elimination and obtained the result “0 equals negative.” She 
interpreted it to mean that there could be no goats and therefore there were 48 pigs.  

Safi: But then if you have 48 pigs, each pig should have 4 legs, which would mean 192 legs. 
But there is 134. So that’s, that’s not accurate. 

Interviewer: Which isn’t accurate? The 192 or the 134 or something else? 
Safi: Well, if you’re paying attention to the heads, like it depends on what you’re looking 

for, if you’re looking at the heads. Then the legs, the 134 doesn’t make sense because you 
have more, you realistically have 192 legs here with 48 pigs. And it says you only have 
134. So that’s not enough to complete your farm [[laughs]]. 

Interviewer: So, when you, I noticed you like put in this adjective there, you “realistically” 
how would you have 192 legs? What did you mean by that? 

Safi: So, we mean, you could have pigs missing legs. Um, ‘cause they don’t need four legs 
to be able to live so if you take out some, we mean we guess you could get to 134. But 
realistically, if they all have 4 legs then that’s how many you would have, you have 192. 

In follow-up questioning, Safi revealed that she noticed that both versions of the problem 
were similar to those she had seen in “algebra and algebra 2 and linear algebra” and so she was 
readily able to set up the system of equations and “in order to solve for each variable you usually 
just do any process that you can,” though she did not use the vocabulary of linear algebra to seek 
solutions or explain the lack of solutions to each system. 

Discussion and Conclusions 
Safi did not arrive at the correct solution for either the Turkeys & Goats problem, due to the 
arithmetic error 48 − 19 = 27. She also did not realize that there was no solution to the system 



of equations she derived for the extension problem although she recognized a contradiction for 
the number of legs required. However, in both versions of the task she did engage in the 
cognitive activities underlying mathematical modeling (as suggested by the observational rubric) 
and she did reach conclusions that were logically consistent with the information she gleaned 
from the task statement. On the surface, it seems unreasonable that Safi would doubt a basic fact 
like turkeys have two legs. Closer inspection reveals that it is a logical consequence of an 
argument she constructed to validate her model (the system of two equations in two unknowns) 
and its prediction (the number of turkeys and goats on the farm). Table 2 shows her argument’s 
structure mapped to propositional logic: 
 

Table 2. Safi’s logical argument 
1. There are 134 legs on the farm (premise) 5. There are 27 turkeys (3, 4) 
2. Turkeys have two legs (premise) 6. There are 130 legs on the farm (3, 4, 5) 
3. The system 𝑥𝑥 + 𝑦𝑦 = 48, 2𝑥𝑥 + 4𝑦𝑦 = 134 

describes the number of animals on the farm (1, 
2) 

7. Contradiction (1, 6). 

4. There are 19 goats (3) 8. Reject (2). 
 
Safi checked her by-hand computations twice to be sure that (4) and (5) turned out correct 

(committing the same mental arithmetic error each time). Her only course of action, logically, is 
to reject one of the two premises upon which (3) stands. Since (1) is given in the problem, she 
must reject (2). Her spoken argument can be reduced to the form of modus tollens: If turkeys 
have two legs, then there are 130 legs on the farm. There are not 130 legs on the farm. Therefore, 
turkeys do not have two legs (she expressed an equivalent summary verbally). She displayed 
similar reasoning patterns on the extension to the pigs and goats problem. 

What is interesting about Safi’s response is not that she is a math major who is a preservice 
teacher who got a routine word problem incorrect (which is the sort of result documented in the 
past); rather, the novelty of Safi’s work is how she used logical reasoning from her advanced 
mathematics courses to make sense of and support her conclusions about the validity of the 
mathematical model she constructed. Students’ untrained reasoning may be incompatible with 
mathematical logic and students’ application of logical structure largely depends on the semantic 
context (Dawkins & Cook, 2017). Safi was a student trained in logic and mathematical reasoning 
with knowledge of the semantic context. Deconstructing Safi’s response in terms of a first-order 
propositional logic revealed how it supported her interpretation and validation of her model, and 
opens questions about whether students’ mathematical thinking during modeling may be 
productively analyzed according to argumentation models (e.g., Toulmin schemes). Her 
responses also suggest that such lenses might reveal insights into the interaction between content 
knowledge and mathematical modeling. Further, Safi’s use of logic shows that mathematics 
majors may not all have the same validating techniques at their disposal as engineering or 
science majors, implying that caution must be exercised when generalizing conclusions about 
modeling behavior among any of these populations (Czocher, 2013). In particular, if 
mathematics majors are using the skills and patterns of reasoning that they learn in advanced 
proof-based courses in other domains it raises new questions about the natures of mathematical 
modeling, problem solving, and proving and what characteristics they may share. Scholars in 
either area must be cautious of overlooking kinds of reasoning not typically linked to the domain 
of inquiry.  For these reasons, further work needs to be done to document what validation 
processes students are likely to bring from various backgrounds and how they contribute to the 
students’ mathematical modeling processes. 
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